Page 25 - Read Online
P. 25

Page 20 of 21                                 Su et al. J Cancer Metastasis Treat 2020;6:19 I  http://dx.doi.org/10.20517/2394-4722.2020.48

               65.  Zhu F, Li D, Ding Q, Lei C, Ren L, et al. 2D magnetic MoS2-Fe3O4 hybrid nanostructures for ultrasensitive exosome detection in GMR
                   sensor. Biosens Bioelectron 2020;147:111787.
               66.  Lei ZQ, Li L, Li GJ, Leung CW, Shi J, et al. Liver cancer immunoassay with magnetic nanoparticles and MgO-based magnetic tunnel
                   junction sensors. J Appl Phys 2012;111:07E505.
               67.  Grancharov SG, Zeng H, Sun S, Wang SX, O’Brien S, et al. Bio-functionalization of monodisperse magnetic nanoparticles and their use
                   as biomolecular labels in a magnetic tunnel junction based sensor. J Phys Chem B 2005;109:13030-5.
               68.  Nesvet J, Rizzi G, Wang SX. Highly sensitive detection of DNA hypermethylation in melanoma cancer cells. Biosens Bioelectron
                   2019;124:136-42.
               69.  Rizzi G, Lee JR, Dahl C, Guldberg P, Dufva M, et al. Simultaneous profiling of DNA mutation and methylation by melting analysis using
                   magnetoresistive biosensor array. ACS Nano 2017;11:8864-70.
               70.  Dias TM, Cardoso FA, Martins SAM, Martins VC, Cardoso S, et al. Implementing a strategy for on-chip detection of cell-free DNA
                   fragments using GMR sensors: a translational application in cancer diagnostics using ALU elements. Anal Methods 2016;8:119-28.
               71.  Kricka LJ, Park JY. Magnetism and magnetoresistance: attractive prospects for point-of-care testing? Clin Chem 2009;55:1058-60.
               72.  Luppa PB, Müller C, Schlichtiger A, Schlebusch H. Point-of-care testing (POCT): current techniques and future perspectives. TrAC
                   Trends Anal Chem 2011;30:887-98.
               73.  Gani AW, Wei W, Shi RZ, Ng E, Nguyen M, et al. An automated, quantitative, and multiplexed assay suitable for point-of-care hepatitis B
                   virus diagnostics. Sci Rep 2019;9:1-11.
               74.  Xu L, Lee JR, Hao S, Ling XB, Brooks JD, et al. Improved detection of prostate cancer using a magneto-nanosensor assay for serum
                   circulating autoantibodies. PLoS One 2019;14.
               75.  Lee JR, Appelmann I, Miething C, Shultz TO, Ruderman D, et al. Longitudinal multiplexed measurement of quantitative proteomic
                   signatures in mouse lymphoma models using magneto-nanosensors. Theranostics 2018;8:1389.
               76.  Ng E, Yao C, Shultz TO, Ross-Howe S, Wang SX. Magneto-nanosensor smartphone platform for the detection of HIV and leukocytosis at
                   point-of-care. Nanomed Nanotechnol Biol Med 2019;16:10-9.
               77.  Ravi N, Rizzi G, Chang SE, Cheung P, Utz PJ, et al. Quantification of cDNA on GMR biosensor array towards point-of-care gene
                   expression analysis. Biosens Bioelectron 2019;130:338-43.
               78.  Nair VS, Beggs M, Yu H, Carbonell L, Wang SX, et al. Validation of plasma TIMP-1 to identify lung cancer in smokers. D99. Clinically
                   informative biomarkers in lung cancer: a needle in a haystack. San Diego: American Thoracic Society; 2018. pp. A7415.
               79.  Zhou X, Sveiven M, Hall DA. A CMOS magnetoresistive sensor front-end with mismatch-tolerance and sub-ppm sensitivity for magnetic
                   immunoassays. IEEE Trans Biomed Circuits Syst 2019;13:1254-63.
               80.  Zhou X, Sveiven M, Hall DA. 11.4 A fast-readout mismatch-insensitive magnetoresistive biosensor front-end achieving Sub-ppm
                   sensitivity. 2019 IEEE International Solid-State Circuits Conference-(ISSCC). San Francisco: IEEE; 2019. pp. 196-8.
               81.  Ridgway JP. Cardiovascular magnetic resonance physics for clinicians: part I. J Cardiovasc Magn Reson 2010;12:71.
               82.  Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology
                   2019;30:502003.
               83.  Lovchinsky I, Sushkov AO, Urbach E, de Leon NP, Choi S et al. Nuclear magnetic resonance detection and spectroscopy of single
                   proteins using quantum logic. Science 2016;351:836-41.
               84.  Kabsch W, Rösch P. Nuclear magnetic resonance: Protein structure determination. Nature 1986;321:469-70.
               85.  Wilson MA. Applications of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter. J Soil Sci
                   1981;32:167-86.
               86.  Debette S, Schilling S, Duperron MG, Larsson SC, Markus HS. Clinical significance of magnetic resonance imaging markers of vascular
                   brain injury: a systematic review and meta-analysis. JAMA Neurol 2019;76:81-94.
               87.  Willke P, Yang K, Bae Y, Heinrich AJ, Lutz CP. Magnetic resonance imaging of single atoms on a surface. Nat Phys 2019;15:1005-10.
               88.  Shao H, Yoon TJ, Liong M, Weissleder R, Lee H. Magnetic nanoparticles for biomedical NMR-based diagnostics. Beilstein J Nanotechnol
                   2010;1:142-54.
               89.  Lee H, Sun E, Ham D, Weissleder R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med 2008;14:869.
               90.  Lee H, Yoon TJ, Weissleder R. Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew Chem
                   2009;121:5767-70.
               91.  Zou D, Jin L, Wu B, Hu L, Chen X, et al. Rapid detection of Salmonella in milk by biofunctionalised magnetic nanoparticle cluster sensor
                   based on nuclear magnetic resonance. Int Dairy J 2019;91:82-8.
               92.  Zhao Y, Li Y, Jiang K, Wang J, White WL, et al. Rapid detection of Listeria monocytogenes in food by biofunctionalized magnetic
                   nanoparticle based on nuclear magnetic resonance. Food Control 2017;71:110-6.
               93.  Zhao Y, Yao Y, Xiao M, Chen Y, Lee CC, et al. Rapid detection of Cronobacter sakazakii in dairy food by biofunctionalized magnetic
                   nanoparticle based on nuclear magnetic resonance. Food Control 2013;34:436-43.
               94.  Ma W, Chen W, Qiao R, Liu C, Yang C, et al. Rapid and sensitive detection of microcystin by immunosensor based on nuclear magnetic
                   resonance. Biosens Bioelectron 2009;25:240-3.
               95.  Ghazani AA, Castro CM, Gorbatov R, Lee H, Weissleder R. Sensitive and direct detection of circulating tumor cells by multimarker
                   µ-nuclear magnetic resonance. Neoplasia (New York, NY) 2012;14:388.
               96.  Khosravi F, Trainor PJ, Lambert C, Kloecker G, Wickstrom E, et al. Static micro-array isolation, dynamic time series classification,
                   capture and enumeration of spiked breast cancer cells in blood: the nanotube-CTC chip. Nanotechnology 2016;27:44LT03.
               97.  Khosravi F, Loeian SM, Panchapakesan B. Ultrasensitive label-free sensing of IL-6 Based on PASE functionalized carbon nanotube
   20   21   22   23   24   25   26   27   28   29   30