Page 23 - Read Online
P. 23
Page 18 of 21 Su et al. J Cancer Metastasis Treat 2020;6:19 I http://dx.doi.org/10.20517/2394-4722.2020.48
Copyright
© The Author(s) 2020.
REFERENCES
1. Definition of liquid biopsy n.d. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/liquid-biopsy. [Last
accessed on 30 Jun 2020]
2. Castro-Giner F, Gkountela S, Donato C, Alborelli I, Quagliata L, et al. Cancer diagnosis using a liquid biopsy: challenges and
expectations. Diagnostics (Basel) 2018;8:31.
3. Ghosh RK, Pandey T, Dey P. Liquid biopsy: a new avenue in pathology. Cytopathology 2019;30:138-43.
4. Snow A, Chen D, Lang JE. The current status of the clinical utility of liquid biopsies in cancer. Expert Rev Mol Diagn 2019;19:1031-41.
5. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 2017;14:531-48.
6. Loeian MS, Mehdi Aghaei S, Farhadi F, Rai V, Yang HW, et al. Liquid biopsy using the nanotube-CTC-chip: capture of invasive CTCs
with high purity using preferential adherence in breast cancer patients. Lab Chip 2019;19:1899-915.
7. Yu Y, Yang Y, Ding J, Meng S, Li C, et al. Design of a biocompatible and ratiometric fluorescent probe for the capture, detection, release,
and reculture of rare number CTCs. Anal Chem 2018;90:13290-8.
8. Kim DM, Kim DH, Jung W, Lee KY, Kim DE. Fluorometric detection of EGFR exon 19 deletion mutation in lung cancer cells using
graphene oxide. Analyst 2018;143:1797-804.
9. Tang Z, Huang J, He H, Ma C, Wang K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis.
Coordination Chemistry Reviews 2020;415:213317.
10. Shields Iv CW, Wang JL, Ohiri KA, Essoyan ED, Yellen BB, et al. Magnetic separation of acoustically focused cancer cells from blood
for magnetographic templating and analysis. Lab Chip 2016;16:3833-44.
11. Tang M, Wen CY, Wu LL, Hong SL, Hu J, et al. A chip assisted immunomagnetic separation system for the efficient capture and in situ
identification of circulating tumor cells. Lab Chip 2016;16:1214-23.
12. Zhang Q, Wang W, Huang S, Yu S, Tan T, et al. Capture and selective release of multiple types of circulating tumor cells using smart
DNAzyme probes. Chem Sci 2020;11:1948-56.
13. Gao Y, Yuan Z. Nanotechnology for the detection and kill of circulating tumor cells. Nanoscale Res Lett 2014;9:500.
14. Aghaamoo M, Zhang Z, Chen X, Xu J. Deformability-based circulating tumor cell separation with conical-shaped microfilters: concept,
optimization, and design criteria. Biomicrofluidics 2015;9:034106.
15. Gwak H, Kim J, Kashefi-Kheyrabadi L, Kwak B, Hyun KA, et al. Progress in circulating tumor cell research using microfluidic devices.
Micromachines (Basel) 2018;9:353.
16. Yu X, Wang B, Zhang N, Yin C, Chen H, et al. Capture and release of cancer cells by combining on-chip purification and off-chip
enzymatic treatment. ACS Appl Mater Interfaces 2015;7:24001-7.
17. Gurudatt NG, Chung S, Kim JM, Kim MH, Jung DK, et al. Separation detection of different circulating tumor cells in the blood using an
electrochemical microfluidic channel modified with a lipid-bonded conducting polymer. Biosens Bioelectron 2019;146:111746.
18. Bruus H. Theoretical microfluidics. Oxford: University Press Oxford; 2008.
19. Liu J, Su D, Wu K, Wang J. High-moment magnetic nanoparticles. J Nanopart Res 2020;22:66.
20. Liang C, Li Y, Luo J. A novel method to detect functional microRNA regulatory modules by bicliques merging. IEEE/ACM Trans
Comput Biol Bioinform 2016;13:549-56.
21. Miller A, Carchman R, Long R, Denslow SA. La Crosse viral infection in hospitalized pediatric patients in Western North Carolina. Hosp
Pediatr 2012;2:235-42.
22. Bai J, Xu Y, Thomas J, Wang J. (FeCo) 3 Si-SiO x core-shell nanoparticles fabricated in the gas phase. Nanotechnology 2007;18:065701.
23. Wei X, Zhu G, Liu Y, Ni Y, Song Y, et al. Large-scale controlled synthesis of FeCo nanocubes and microcages by wet chemistry. Chem
Mater 2008;20:6248-53.
24. Chakka VM, Altuncevahir B, Jin ZQ, Li Y, Liu JP. Magnetic nanoparticles produced by surfactant-assisted ball milling. J Appl Phys
2006;99:08E912.
25. Chen P, Huang YY, Bhave G, Hoshino K, Zhang X. Inkjet-print micromagnet array on glass slides for immunomagnetic enrichment of
circulating tumor cells. Ann Biomed Eng 2016;44:1710-20.
26. Schreier S, Sawaisorn P, Udomsangpetch R, Triampo W. Advances in rare cell isolation: an optimization and evaluation study. J Transl
Med 2017;15:6.
27. Rao L, Meng QF, Huang Q, Wang Z, Yu GT, et al. Platelet-leukocyte hybrid membrane-coated immunomagnetic beads for highly
efficient and highly specific isolation of circulating tumor cells. Adv Funct Mater 2018;28:1803531.
28. Earhart CM, Hughes CE, Gaster RS, Ooi CC, Wilson RJ, et al. Isolation and mutational analysis of circulating tumor cells from lung
cancer patients with magnetic sifters and biochips. Lab Chip 2014;14:78-88.
29. McDonald JC, Whitesides GM. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 2002;35:491-9.
30. Mcdonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane).
Electrophoresis 2000;21:27-40.
31. Chaudhury MK, Whitesides GM. Direct measurement of interfacial interactions between semispherical lenses and flat sheets of
poly(dimethylsiloxane) and their chemical derivatives. Langmuir 1991;7:1013-25.