Page 25 - Read Online
P. 25

Page 10 of 11                         Tulotta et al. J Cancer Metastasis Treat 2019;5:74  I  http://dx.doi.org/10.20517/2394-4722.2019.022

                   ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol 2014;193:5327-37.
               41.  Guo ZS. The 2018 Nobel Prize in medicine goes to cancer immunotherapy (editorial for BMC cancer). BMC Cancer 2018;18:1086.
               42.  Chen IX, Chauhan VP, Posada J, Ng MR, Wu MW, et al. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration,
                   and improves immunotherapy in metastatic breast cancer. Proc Natl Acad Sci U S A 2019;116:4558-66.
               43.  Patton EE, Dhillon P, Amatruda JF, Ramakrishnan L. Spotlight on zebrafish: translational impact. Dis Model Mech 2014;7:731-3.
               44.  Antonio N, Bonnelykke-Behrndtz ML, Ward LC, Collin J, Christensen IJ, et al. The wound inflammatory response exacerbates
                   growth of pre-neoplastic cells and progression to cancer. EMBO J 2015;34:2219-36.
               45.  Feng Y, Renshaw S, Martin P. Live imaging of tumor initiation in zebrafish larvae reveals a trophic role for leukocyte-derived PGE(2).
                   Curr Biol 2012;22:1253-9.
               46.  Feng Y, Santoriello C, Mione M, Hurlstone A, Martin P. Live imaging of innate immune cell sensing of transformed cells in zebrafish
                   larvae: parallels between tumor initiation and wound inflammation. PLoS Biol 2010;8:e1000562.
               47.  Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn
                   1995;203:253-310.
               48.  Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter transgenes direct macrophage-lineage expression in
                   zebrafish. Blood 2011;117:e49-56.
               49.  Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 2002;248:307-18.
               50.  Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, et al. A transgenic zebrafish model of neutrophilic inflammation.
                   Blood 2006;108:3976-8.
               51.  Gonzales AP, Yeh JR. Cas9-based genome editing in zebrafish. Methods Enzymol 2014;546:377-413.
               52.  Lawson ND, Wolfe SA. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell
                   2011;21:48-64.
               53.  Robertson AL, Holmes GR, Bojarczuk AN, Burgon J, Loynes CA, et al. A zebrafish compound screen reveals modulation of
                   neutrophil reverse migration as an anti-inflammatory mechanism. Sci Transl Med 2014;6:225ra29.
               54.  Goessling W, North TE, Zon LI. New waves of discovery: modeling cancer in zebrafish. J Clin Oncol 2007;25:2473-9.
               55.  Ung CY, Lam SH, Gong Z. Comparative transcriptome analyses revealed conserved biological and transcription factor target modules
                   between the zebrafish and human tumors. Zebrafish 2009;6:425-31.
               56.  Amatruda JF, Shepard JL, Stern HM, Zon LI. Zebrafish as a cancer model system. Cancer Cell 2002;1:229-31.
               57.  Letrado P, de Miguel I, Lamberto I, Diez-Martinez R, Oyarzabal J. Zebrafish: speeding up the cancer drug discovery process. Cancer
                   Res 2018;78:6048-58.
               58.  van der Ent W, Veneman WJ, Groenewoud A, Chen L, Tulotta C, et al. Automation of technology for cancer research. Adv Exp Med
                   Biol 2016;916:315-32.
               59.  Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 2005;4:35-44.
               60.  He SN, Lamers GEM, Beenakker JWM, Cui C, Ghotra VPS, et al. Neutrophil-mediated experimental metastasis is enhanced by
                   VEGFR inhibition in a zebrafish xenograft model. J Pathol 2012;227:431-45.
               61.  Tulotta C, He S, Chen L, Groenewoud A, van der Ent W, et al. Imaging of human cancer cell proliferation, invasion, and
                   micrometastasis in a Zebrafish xenogeneic engraftment model. Methods Mol Biol 2016;1451:155-69.
               62.  Tulotta C, He S, van der Ent W, Chen L, Groenewoud A, et al. Imaging cancer angiogenesis and metastasis in a Zebrafish embryo
                   model. Adv Exp Med Biol 2016;916:239-63.
               63.  Astone M, Dankert EN, Alam SK, Hoeppner LH. Fishing for cures: the alLURE of using zebrafish to develop precision oncology
                   therapies. NPJ Precis Oncol 2017;1:39.
               64.  Gaudenzi G, Albertelli M, Dicitore A, Wurth R, Gatto F, et al. Patient-derived xenograft in zebrafish embryos: a new platform for
                   translational research in neuroendocrine tumors. Endocrine 2017;57:214-9.
               65.  Mercatali L, La Manna F, Groenewoud A, Casadei R, Recine F, et al. Development of a patient-derived xenograft (PDX) of breast
                   cancer bone metastasis in a Zebrafish model. Int J Mol Sci 2016;17:E1375.
               66.  Wu JQ, Zhai J, Li CY, Tan AM, Wei P, et al. Patient-derived xenograft in zebrafish embryos: a new platform for translational research
                   in gastric cancer. J Exp Clin Cancer Res 2017;36:160.
               67.  Tulotta C, Groenewoud A, Snaar-Jagalska BE, Ottewell P. Animal models of breast cancer bone metastasis. Methods Mol Biol
                   2019;1914:309-30.
               68.  Vazquez Rodriguez G, Abrahamsson A, Jensen LD, Dabrosin C. Estradiol promotes breast cancer cell migration via recruitment and
                   activation of neutrophils. Cancer Immunol Res 2017;5:234-47.
               69.  Kiener M, Chen L, Krebs M, Grosjean J, Klima I, et al. miR-221-5p regulates proliferation and migration in human prostate cancer
                   cells and reduces tumor growth in vivo. BMC Cancer 2019;19:627.
               70.  Ghotra VP, He S, van der Horst G, Nijhoff S, de Bont H, et al. SYK is a candidate kinase target for the treatment of advanced prostate
                   cancer. Cancer Res 2015;75:230-40.
               71.  Canella A, Welker AM, Yoo JY, Xu J, Abas FS, et al. Efficacy of Onalespib, a long-acting second-generation HSP90 inhibitor, as a
                   single agent and in combination with temozolomide against malignant gliomas. Clin Cancer Res 2017;23:6215-26.
               72.  Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett 2008;267:226-44.
               73.  Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis
                   in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996;382:635-8.
               74.  Rosu-Myles M, Gallacher L, Murdoch B, Hess DA, Keeney M, et al. The human hematopoietic stem cell compartment is
   20   21   22   23   24   25   26   27   28   29   30