Page 107 - Read Online
P. 107
Tessari et al. J Cancer Metastasis Treat 2020;6:18 I http://dx.doi.org/10.20517/2394-4722.2020.32 Page 11 of 11
Res 2019;25:3759-71.
61. Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell 2016;165:535-50.
62. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet
2012;13:227-32.
63. Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, et al. TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression
to invasive spindle carcinomas in transgenic mice. Cell 1996;86:531-42.
64. Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A
2003;100:8621-3.
65. Lane DP. Cancer. p53, guardian of the genome. Nature 1992;358:15-6.
66. Palmieri D, Tessari A, Coppola V. Scorpins in the DNA damage response. Int J Mol Sci 2018;19.
67. Hosono K, Noda S, Shimizu A, Nakanishi N, Ohtsubo M, et al. YPEL5 protein of the YPEL gene family is involved in the cell cycle
progression by interacting with two distinct proteins RanBPM and RanBP10. Genomics 2010;96:102-11.
68. Denti S, Sirri A, Cheli A, Rogge L, Innamorati G, et al. RanBPM is a phosphoprotein that associates with the plasma membrane and
interacts with the integrin LFA-1. J Biol Chem 2004;279:13027-34.
69. Coffill CR, Muller PA, Oh HK, Neo SP, Hogue KA, et al. Mutant p53 interactome identifies nardilysin as a p53R273H-specific binding
partner that promotes invasion. EMBO Rep 2012;13:638-44.
70. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296-9.
71. Domingues SC, Konietzko U, Henriques AG, Rebelo S, Fardilha M, et al. RanBP9 modulates AICD localization and transcriptional
activity via direct interaction with Tip60. J Alzheimers Dis 2014;42:1415-33.
72. Ikura M, Furuya K, Fukuto A, Matsuda R, Adachi J, et al. Coordinated Regulation of TIP60 and Poly(ADP-Ribose) Polymerase 1 in
damaged-chromatin dynamics. Mol Cell Biol 2016;36:1595-607.
73. Ikura M, Furuya K, Matsuda S, Matsuda R, Shima H, et al. Acetylation of histone H2AX at Lys 5 by the TIP60 histone acetyltransferase
complex is essential for the dynamic binding of NBS1 to damaged chromatin. Mol Cell Biol 2015;35:4147-57.
74. Kaidi A, Jackson SP. Retraction note: KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature
2019;568:576.
75. Legube G, Linares LK, Tyteca S, Caron C, Scheffner M, et al. Role of the histone acetyl transferase Tip60 in the p53 pathway. J Biol
Chem 2004;279:44825-33.
76. Tang Y, Luo J, Zhang W, Gu W. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol
Cell 2006;24:827-39.
77. Wang Y, Marion Schneider E, Li X, Duttenhofer I, Debatin K, et al. HIPK2 associates with RanBPM. Biochem Biophys Res Commun
2002;297:148-53.
78. Hofmann TG, Glas C, Bitomsky N. HIPK2: a tumour suppressor that controls DNA damage-induced cell fate and cytokinesis. Bioessays
2013;35:55-64.
79. Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and
checkpoint kinases ATM and ATR. Nat Cell Biol 2008;10:812-24.
80. Meyer I, Kunert S, Schwiebert S, Hagedorn I, Italiano JE Jr, et al. Altered microtubule equilibrium and impaired thrombus stability in
mice lacking RanBP10. Blood 2012;120:3594-602.
81. Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, et al. Proteomic investigations reveal a role for RNA processing factor
THRAP3 in the DNA damage response. Mol Cell 2012;46:212-25.
82. Pines A, Kelstrup CD, Vrouwe MG, Puigvert JC, Typas D, et al. Global phosphoproteome profiling reveals unanticipated networks
responsive to cisplatin treatment of embryonic stem cells. Mol Cell Biol 2011;31:4964-77.
83. Elia AE, Boardman AP, Wang DC, Huttlin EL, Everley RA, et al. Quantitative Proteomic Atlas of Ubiquitination and Acetylation in the
DNA Damage Response. Mol Cell 2015;59:867-81.
84. Soliman SHA, Stark AE, Gardner ML, Harshman SW, Breece CC, et al. Tagging enhances histochemical and biochemical detection of
ran binding protein 9 in vivo and reveals its interaction with Nucleolin. Sci Rep 2020;10:7138.
85. Das S, Suresh B, Kim HH, Ramakrishna S. RanBPM: a potential therapeutic target for modulating diverse physiological disorders. Drug
Discov Today 2017; doi: 10.1016/j.drudis.2017.08.005.
86. Havugimana PC, Hart GT, Nepusz T, Yang H, Turinsky AL, et al. A census of human soluble protein complexes. Cell 2012;150:1068-81.
87. Lisby M, Rothstein R. Choreography of recombination proteins during the DNA damage response. DNA Repair (Amst) 2009;8:1068-76.
88. Lisby M, Barlow JH, Burgess RC, Rothstein R. Choreography of the DNA damage response: spatiotemporal relationships among
checkpoint and repair proteins. Cell 2004;118:699-713.
89. Polo SE. Reshaping chromatin after DNA damage: the choreography of histone proteins. J Mol Biol 2015;427:626-36.
90. Jacquet K, Fradet-Turcotte A, Avvakumov N, Lambert JP, Roques C, et al. The TIP60 complex regulates bivalent chromatin recognition
by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol Cell 2016;62:409-21.
91. Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol 2011;2011:583929.
92. Simabuco FM, Morale MG, Pavan ICB, Morelli AP, Silva FR, et al. p53 and metabolism: from mechanism to therapeutics. Oncotarget
2018;9:23780-823.
93. Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism. J Mol Cell Biol 2019;11:284-92.
94. Kim J, Yu L, Chen W, Xu Y, Wu M, et al. Wild-Type p53 promotes cancer metabolic switch by inducing PUMA-dependent suppression
of oxidative phosphorylation. Cancer Cell 2019;35:191-203.e8.