Page 371 - Read Online
P. 371

Page 16 of 16                         Anstine et al. J Cancer Metastasis Treat 2019;5:50  I  http://dx.doi.org/10.20517/2394-4722.2019.24

               76.  Lim E, Vaillant F, Wu D, Forrest NC, Pal B, et al. Aberrant luminal progenitors as the candidate target population for basal tumor
                   development in BRCA1 mutation carriers. Nat Med 2009;15:907-13.
               77.  Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, et al. BRCA1 basal-like breast cancers originate from luminal epithelial
                   progenitors and not from basal stem cells. Cell Stem Cell 2010;7:403-17.
               78.  Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, et al. Identification of conserved gene expression features between
                   murine mammary carcinoma models and human breast tumors. Genome Biol 2007;8:R76.
               79.  Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor
                   cell fate. Cell Stem Cell 2011;8:149-63.
               80.  Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, et al. Unravelling subclonal heterogeneity and aggressive disease
                   states in TNBC through single-cell RNA-seq. Nat Commun 2018;9:3588.
               81.  Ferrari A, Sertier AS, Vincent-Salomon A, Pivot X, Pauporte I, et al. A phenotypic and mechanistic perspective on heterogeneity of
                   HER2-positive breast cancers. Mol Cell Oncol 2016;3:e1232186.
               82.  Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, et al. The mammary progenitor marker CD61/beta3 integrin
                   identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008;68:7711-7.
               83.  Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, et al. The Wnt/beta-catenin pathway is required for the development of
                   leukemia stem cells in AML. Science 2010;327:1650-3.
               84.  Thompson EG, Fares H, Dixon K. BRCA1 requirement for the fidelity of plasmid DNA double-strand break repair in cultured breast
                   epithelial cells. Environ Mol Mutagen 2012;53:32-43.
               85.  Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012;21:283-96.
               86.  Chung W, Eum HH, Lee HO, Lee KM, Lee HB, et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in
                   primary breast cancer. Nat Commun 2017;8:15081.
               87.  Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, et al. Sequence analysis of mutations and translocations across breast
                   cancer subtypes. Nature 2012;486:405-9.
               88.  Ellis MJ, Perou CM. The genomic landscape of breast cancer as a therapeutic roadmap. Cancer Discov 2013;3:27-34.
               89.  Shipitsin M, Polyak K. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab Invest 2008;88:459-63.
               90.  Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, et al. The epithelial-mesenchymal transition generates cells with properties of stem
                   cells. Cell 2008;133:704-15.
               91.  Sin WC, Lim CL. Breast cancer stem cells-from origins to targeted therapy. Stem Cell Investig 2017;4:96.
               92.  Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell
                   2012;148:1015-28.
               93.  Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer 2009;9:285-93.
               94.  Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity
                   and enhances tumorigenicity. Cell 2013;154:61-74.
               95.  Lau  EY, Ho NP,  Lee  TK.  Cancer  stem  cells  and their  microenvironment:  biology  and  therapeutic  implications.  Stem  Cells  Int
                   2017;2017:3714190.
               96.  Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989;8:98-101.
               97.  Huo CW, Hill P, Chew G, Neeson PJ, Halse H, et al. High mammographic density in women is associated with protumor inflammation.
                   Breast Cancer Res 2018;20:92.
               98.  Mentoor I, Engelbrecht AM, van Jaarsveld PJ, Nell T. Chemoresistance: intricate interplay between breast tumor cells and adipocytes
                   in the tumor microenvironment. Front Endocrinol (Lausanne) 2018;9:758.
               99.  Martinson HA, Jindal S, Durand-Rougely C, Borges VF, Schedin P. Wound healing-like immune program facilitates postpartum
                   mammary gland involution and tumor progression. Int J Cancer 2015;136:1803-13.
               100.  Bruno RD, Smith GH. Reprogramming non-mammary and cancer cells in the developing mouse mammary gland. Semin Cell Dev Biol
                   2012;23:591-8.
               101.  Bruno RD, Boulanger CA, Rosenfield SM, Anderson LH, Lydon JP, et al. Paracrine-rescued lobulogenesis in chimeric outgrowths
                   comprising progesterone-receptor-null mammary epithelium and redirected wild-type testicular cells. J Cell Sci 2014;127:27-32.
               102.  Boulanger CA, Bruno RD, Rosu-Myles M, Smith GH. The mouse mammary microenvironment redirects mesoderm-derived bone
                   marrow cells to a mammary epithelial progenitor cell fate. Stem Cells Dev 2012;21:948-54.
               103.  Bruno RD, Fleming JM, George AL, Boulanger CA, Schedin P, et al. Mammary extracellular matrix directs differentiation of testicular
                   and embryonic stem cells to form functional mammary glands in vivo. Sci Rep 2017;7:40196.
               104.  Boulanger CA, Bruno RD, Mack DL, Gonzales M, Castro NP, et al. Embryonic stem cells are redirected to non-tumorigenic epithelial
                   cell fate by interaction with the mammary microenvironment. PLoS One 2013;8:e62019.
               105.  Barcellos-Hoff MH, Ravani SA. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated
                   epithelial cells. Cancer Res 2000;60:1254-60.
               106.  Maffini MV, Calabro JM, Soto AM, Sonnenschein C. Stromal regulation of neoplastic development: age-dependent normalization of
                   neoplastic mammary cells by mammary stroma. Am J Pathol 2005;167:1405-10.
               107.  Casey AE, Sinha A, Singhania R, Livingstone J, Waterhouse P, et al. Mammary molecular portraits reveal lineage-specific features and
                   progenitor cell vulnerabilities. J Cell Biol 2018;217:2951-74.
               108.  Biddy BA, Kong WJ, Kamimoto K, Guo C, Waye SE, et al. Single-cell mapping of lineage and identity in direct reprogramming. Nature
                   2018;564:219-24.
   366   367   368   369   370   371   372   373   374   375   376