Page 370 - Read Online
P. 370

Anstine et al. J Cancer Metastasis Treat 2019;5:50  I  http://dx.doi.org/10.20517/2394-4722.2019.24                        Page 15 of 16

               43.  Shehata M, van Amerongen R, Zeeman AL, Giraddi RR, Stingl J. The influence of tamoxifen on normal mouse mammary gland
                   homeostasis. Breast Cancer Res 2014;16:411.
               44.  Yang X, Wang H, Jiao B. Mammary gland stem cells and their application in breast cancer. Oncotarget 2017;8:10675-91.
               45.  Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, et al. Transcriptome analyses of mouse and human mammary cell subpopulations
                   reveal multiple conserved genes and pathways. Breast Cancer Res 2010;12:R21.
               46.  Trejo CL, Luna G, Dravis C, Spike BT, Wahl GM. Lgr5 is a marker for fetal mammary stem cells, but is not essential for stem cell
                   activity or tumorigenesis. NPJ Breast Cancer 2017;3:16.
               47.  Shi XS, Chakraborty P, Chaudhuri A. Unmasking tumor heterogeneity and clonal evolution by single-cell analysis. J Cancer Metastasis
                   Treat 2018;4:47.
               48.  Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, et al. Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A
                   1992;89:3010-4.
               49.  Cano-Gauci DF, Lualdi JC, Ouellette AJ, Brady G, Iscove NN, et al. In vitro cDNA amplification from individual intestinal crypts: a
                   novel approach to the study of differential gene expression along the crypt-villus axis. Exp Cell Res 1993;208:344-9.
               50.  Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 2018;13:599-604.
               51.  Kuipers J, Jahn K, Beerenwinkel N. Advances in understanding tumour evolution through single-cell sequencing. Biochim Biophys
                   Acta Rev Cancer 2017;1867:127-38.
               52.  Wuidart A, Sifrim A, Fioramonti M, Matsumura S, Brisebarre A, et al. Early lineage segregation of multipotent embryonic mammary
                   gland progenitors. Nat Cell Biol 2018;20:666-76.
               53.  Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, et al. Construction of developmental lineage relationships in the mouse mammary
                   gland by single-cell RNA profiling. Nat Commun 2017;8:1627.
               54.  Wang C, Christin JR, Oktay MH, Guo W. Lineage-biased stem cells maintain estrogen-receptor-positive and -negative mouse mammary
                   luminal lineages. Cell Rep 2017;18:2825-35.
               55.  Van Keymeulen A, Fioramonti M, Centonze A, Bouvencourt G, Achouri Y, et al. Lineage-restricted mammary stem cells sustain the
                   development, homeostasis, and regeneration of the estrogen receptor positive lineage. Cell Rep 2017;20:1525-32.
               56.  Cai S, Kalisky T, Sahoo D, Dalerba P, Feng W, et al. A quiescent Bcl11b high stem cell population is required for maintenance of the
                   mammary gland. Cell Stem Cell 2017;20:247-60.e5.
               57.  Fu NY, Rios AC, Pal B, Law CW, Jamieson P, et al. Identification of quiescent and spatially restricted mammary stem cells that are
                   hormone responsive. Nat Cell Biol 2017;19:164-76.
               58.  Dravis C, Chung CY, Lytle NK, Herrera-Valdez J, Luna G, et al. Epigenetic and transcriptomic profiling of mammary gland development
                   and tumor models disclose regulators of cell state plasticity. Cancer Cell 2018;34:466-82.e6.
               59.  Gu B, Sun P, Yuan Y, Moraes RC, Li A, et al. Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. J
                   Cell Biol 2009;185:811-26.
               60.  Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human
                   mammary stem cells. Cancer Res 2006;66:6063-71.
               61.  Pietersen AM, Evers B, Prasad AA, Tanger E, Cornelissen-Steijger P, et al. Bmi1 regulates stem cells and proliferation and differentiation
                   of committed cells in mammary epithelium. Curr Biol 2008;18:1094-9.
               62.  Pal B, Bouras T, Shi W, Vaillant F, Sheridan JM, et al. Global changes in the mammary epigenome are induced by hormonal cues and
                   coordinated by Ezh2. Cell Rep 2013;3:411-26.
               63.  Hoenerhoff MJ, Chu I, Barkan D, Liu ZY, Datta S, et al. BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype
                   with brain metastases. Oncogene 2009;28:3022-32.
               64.  Paranjape AN, Balaji SA, Mandal T, Krushik EV, Nagaraj P, et al. Bmi1 regulates self-renewal and epithelial to mesenchymal transition
                   in breast cancer cells through Nanog. BMC Cancer 2014;14:785.
               65.  Moore HM, Gonzalez ME, Toy KA, Cimino-Mathews A, Argani P, et al. EZH2 inhibition decreases p38 signaling and suppresses breast
                   cancer motility and metastasis. Breast Cancer Res Treat 2013;138:741-52.
               66.  Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, et al. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis.
                   Cancer Metastasis Rev 2012;31:753-61.
               67.  Lilja AM, Rodilla V, Huyghe M, Hannezo E, Landragin C, et al. Clonal analysis of Notch1-expressing cells reveals the existence of
                   unipotent stem cells that retain long-term plasticity in the embryonic mammary gland. Nat Cell Biol 2018;20:677-87.
               68.  Mayor R, Theveneau E. The neural crest. Development 2013;140:2247-51.
               69.  Laurenti E, Gottgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018;553:418-26.
               70.  Visvader JE. Cells of origin in cancer. Nature 2011;469:314-22.
               71.  Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol 2011;5:5-23.
               72.  Prat A, Parker JS, Karginova O, Fan C, Livasy C, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype
                   of breast cancer. Breast Cancer Res 2010;12:R68.
               73.  Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses
                   with clinical implications. Proc Natl Acad Sci U S A 2001;98:10869-74.
               74.  Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, et al. A collection of breast cancer cell lines for the study of functionally distinct
                   cancer subtypes. Cancer Cell 2006;10:515-27.
               75.  Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell
                   2014;54:716-27.
   365   366   367   368   369   370   371   372   373   374   375