Page 369 - Read Online
P. 369

Page 14 of 16                         Anstine et al. J Cancer Metastasis Treat 2019;5:50  I  http://dx.doi.org/10.20517/2394-4722.2019.24

                   lineage specification programs in early mammary gland development. Cell Rep 2018;24:1653-1666.e7.
               13.  Sun H, Miao Z, Zhang X, Chan UI, Su SM, et al. Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary
                   epithelia. J Biol Chem 2018;293:8315-29.
               14.  Nguyen QH, Pervolarakis N, Blake K, Ma D, Davis RT, et al. Profiling human breast epithelial cells using single cell RNA sequencing
                   identifies cell diversity. Nat Commun 2018;9:2028.
               15.  Deome KB, Faulkin LJ Jr, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into
                   gland-free mammary fat pads of female C3H mice. Cancer Res 1959;19:515-20.
               16.  Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin LJ Jr. The in vivo life span of normal and preneoplastic mouse mammary glands:
                   a serial transplantation study. Proc Natl Acad Sci U S A 1968;61:53-60.
               17.  Hoshino K. Morphogenesis and growth potentiality of mammary glands in mice. I. Transplantability and growth potentiality of
                   mammary tissue of virgin mice. J Natl Cancer Inst 1962;29:835-51.
               18.  Smith GH, Gallahan D, Zwiebel JA, Freeman SM, Bassin RH, et al. Long-term in vivo expression of genes introduced by retrovirus-
                   mediated transfer into mammary epithelial cells. J Virol 1991;65:6365-70.
               19.  Smith GH, Medina D. A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J Cell Sci
                   1988;90:173-83.
               20.  Young LJ, Medina D, DeOme KB, Daniel CW. The influence of host and tissue age on life span and growth rate of serially transplanted
                   mouse mammary gland. Exp Gerontol 1971;6:49-56.
               21.  Kordon  EC,  Smith  GH.  An  entire  functional  mammary  gland  may  comprise  the  progeny  from  a  single  cell.  Development
                   1998;125:1921-30.
               22.  Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, et al. Generation of a functional mammary gland from a single stem cell.
                   Nature 2006;439:84-8.
               23.  Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, et al. Purification and unique properties of mammary epithelial stem cells.
                   Nature 2006;439:993-7.
               24.  Shehata M, Teschendorff A, Sharp G, Novcic N, Russell IA, et al. Phenotypic and functional characterisation of the luminal cell
                   hierarchy of the mammary gland. Breast Cancer Res 2012;14:R134.
               25.  Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ. CD24 staining of mouse mammary gland cells defines luminal
                   epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 2006;8:R7.
               26.  Bai L, Rohrschneider LR. s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue. Genes Dev
                   2010;24:1882-92.
               27.  Plaks V, Brenot A, Lawson DA, Linnemann JR, Van Kappel EC, et al. Lgr5-expressing cells are sufficient and necessary for postnatal
                   mammary gland organogenesis. Cell Rep 2013;3:70-8.
               28.  Rios AC, Fu NY, Lindeman GJ, Visvader JE. In situ identification of bipotent stem cells in the mammary gland. Nature 2014;506:322-7.
               29.  de Visser KE, Ciampricotti M, Michalak EM, Tan DW, Speksnijder EN, et al. Developmental stage-specific contribution of LGR5(+)
                   cells to basal and luminal epithelial lineages in the postnatal mammary gland. J Pathol 2012;228:300-9.
               30.  Badders NM, Goel S, Clark RJ, Klos KS, Kim S, et al. The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is
                   required to maintain the basal lineage. PLoS One 2009;4:e6594.
               31.  Zeng YA, Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell
                   Stem Cell 2010;6:568-77.
               32.  Spike BT, Engle DD, Lin JC, Cheung SK, La J, et al. A mammary stem cell population identified and characterized in late embryogenesis
                   reveals similarities to human breast cancer. Cell Stem Cell 2012;10:183-97.
               33.  Wang D, Cai C, Dong X, Yu QC, Zhang XO, et al. Identification of multipotent mammary stem cells by protein C receptor expression.
                   Nature 2015;517:81-4.
               34.  Van Keymeulen A, Rocha AS, Ousset M, Beck B, et al. Distinct stem cells contribute to mammary gland development and maintenance.
                   Nature 2011;479:189-93.
               35.  Davis FM, Lloyd-Lewis B, Harris OB, Kozar S, Winton DJ, et al. Single-cell lineage tracing in the mammary gland reveals stochastic
                   clonal dispersion of stem/progenitor cell progeny. Nat Commun 2016;7:13053.
               36.  Wuidart A, Ousset M, Rulands S, Simons BD, Van Keymeulen A, et al. Quantitative lineage tracing strategies to resolve multipotency
                   in tissue-specific stem cells. Genes Dev 2016;30:1261-77.
               37.  Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to
                   TGF-beta1 expression. Oncogene 2005;24:552-60.
               38.  van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in
                   the mammary gland. Cell Stem Cell 2012;11:387-400.
               39.  Song W, Wang R, Jiang W, Yin Q, Peng G, et al. Hormones induce the formation of luminal-derived basal cells in the mammary gland.
                   Cell Res 2019; doi: 10.1038/s41422-018-0137-0.
               40.  Morris  RJ,  Liu  Y,  Marles  L,  Yang  Z,  Trempus  C,  et  al.  Capturing  and  profiling  adult  hair  follicle  stem  cells.  Nat  Biotechnol
                   2004;22:411-7.
               41.  Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH, et al. Clonal analysis of lineage fate in native haematopoiesis.
                   Nature 2018;553:212-6.
               42.  Rios AC, Fu NY, Cursons J, Lindeman GJ, Visvader JE. The complexities and caveats of lineage tracing in the mammary gland. Breast
                   Cancer Res 2016;18:116.
   364   365   366   367   368   369   370   371   372   373   374