Page 208 - Read Online
P. 208

Page 18 of 18                              Borniger. J Cancer Metastasis Treat 2019;5:23  I  http://dx.doi.org/10.20517/2394-4722.2018.107

                   in patients with cancer: university of rochester cancer center-community clinical oncology program. J Clin Oncol 2010;28:292-8.
               121.  Ancoli-Israel S, Liu L, Marler MR, Parker BA, Jones V, et al. Fatigue, sleep, and circadian rhythms prior to chemotherapy for breast cancer.
                   Support Care Cancer 2006;14:201-9.
               122.  Moore M, Packer M, Innominato PF, Koopman C, Kesler S, et al. Sleep, circadian disruption and neurocognition in breast cancer (BC)
                   patients undergoing chemotherapy. J Clin Oncol 2016;34:10072.
               123.  Zhu Y, Brown HN, Zhang Y, Stevens RG, Zheng T. Period3 structural variation: a circadian biomarker associated with breast cancer in
                   young women. Cancer Epidemiol Prev Biomark 2005;14:268-70.
               124.  Dedert E, Lush E, Chagpar A, Dhabhar FS, Segerstrom SC, et al. Stress, coping, and circadian disruption among women awaiting breast
                   cancer surgery. Ann Behav Med 2012;44:10-20.
               125.  Pereira J, Hanson J, Bruera E. The frequency and clinical course of cognitive impairment in patients with terminal cancer. Cancer
                   1997;79:835-42.
               126.  Hutchinson AD, Hosking JR, Kichenadasse G, Mattiske JK, Wilson C. Objective and subjective cognitive impairment following
                   chemotherapy for cancer: a systematic review. Cancer Treat Rev 2012;38:926-34.
               127.  Von Ah D, Habermann B, Carpenter JS, Schneider BL. Impact of perceived cognitive impairment in breast cancer survivors. Eur J Oncol
                   Nurs 2013;17:236-41.
               128.  Jenkins V, Shilling V, Deutsch G, Bloomfield D, Morris R, et al. A 3-year prospective study of the effects of adjuvant treatments on
                   cognition in women with early stage breast cancer. Br J Cancer 2006;94:828-34.
               129.  Villarreal-Garza C, Shaw-Dulin R, Lara-Medina F, Bacon L, Rivera D, et al. Impact of diabetes and hyperglycemia on survival in advanced
                   breast cancer patients. J Diabetes Res 2012;2012:e732027.
               130.  Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer 2007;121:856-62.
               131.  Schoemaker MJ, Nichols HB, Wright LB, Brook MN, Jones ME, et al. Association of body mass index and age with subsequent breast
                   cancer risk in premenopausal women. JAMA Oncol 2018;4:e181771.
               132.  Muti P, Quattrin T, Grant BJB, Krogh V, Micheli A, et al. Fasting glucose is a risk factor for breast cancer: a prospective study. Cancer
                   epidemiol prev biomark 2002;11:1361-8.
               133.  Xuan C, Shamonki JM, Chung A, DiNome ML, Chung M, et al. Microbial dysbiosis is associated with human breast cancer. PLoS One
                   2014;9:e83744.
               134.  Goedert JJ, Jones G, Hua X, Xu X, Yu G, et al. Investigation of the association between the fecal microbiota and breast cancer in
                   postmenopausal women: a population-based case-control pilot study. J Natl Cancer Inst 2015;107:djv147.
               135.  Luu TH, Michel C, Bard JM, Dravet F, Nazih H, et al. Intestinal proportion of blautia sp. is associated with clinical stage and histoprognostic
                   grade in patients with early-stage breast cancer. Nutr Cancer 2017;69:267-75.
               136.  Minelli EB, Beghini AM, Vesentini S, Marchiori L, Nardo G, et al. Intestinal microflora as an alternative metabolic source of estrogens in
                   women with uterine leiomyoma and breast cancer. Ann N Y Acad Sci 1990;595:473-9.
               137.  Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, et al. Elevated biomarkers of inflammation are associated
                   with reduced survival among breast cancer patients. J Clin Oncol 2009;27:3437-44.
               138.  Murri AMA, Bartlett JMS, Canney PA, Doughty JC, Wilson C, et al. Evaluation of an inflammation-based prognostic score (GPS) in
                   patients with metastatic breast cancer. Br J Cancer 2006;94:227-30.
               139.  McMillan DC, Elahi MM, Sattar N, Angerson WJ, Johnstone J, et al. Measurement of the systemic inflammatory response predicts cancer-
                   specific and non-cancer survival in patients with cancer. Nutr Cancer 2001;41:64-9.
               140.  Iyengar NM, Zhou XK, Gucalp A, Morris PG, Howe LR, et al. Systemic correlates of white adipose tissue inflammation in early-stage
                   breast cancer. Clin Cancer Res 2016;22:2283-9.
               141.  Pyter LM, Pineros V, Galang JA, McClintock MK, Prendergast BJ. Peripheral tumors induce depressive-like behaviors and cytokine
                   production and alter hypothalamic-pituitary-adrenal axis regulation. Proc Natl Acad Sci U S A 2009;106:9069-74.
               142.  Norden DM, Devine R, Bicer S, Jing R, Reiser PJ, et al. Fluoxetine prevents the development of depressive-like behavior in a mouse model
                   of cancer related fatigue. Physiol Behav 2015;140:230-5.
               143.  Norden DM, Bicer S, Clark Y, Jing R, Henry CJ, et al. Tumor growth increases neuroinflammation, fatigue and depressive-like behavior
                   prior to alterations in muscle function. Brain Behav Immun. 2015;43:76-85.
               144.  Grossberg AJ, Zhu X, Leinninger GM, Levasseur PR, Braun TP, et al. Inflammation-induced lethargy is mediated by suppression of orexin
                   neuron activity. J Neurosci 2011;31:11376-86.
               145.  Huan H, Wen X, Chen X, Wu L, Wu L, et al. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation
                   through activation of alpha1-adrenergic receptors of Kupffer cells. Brain Behav Immun 2017;59:118-34.
               146.  Basu S, Sarkar C, Chakroborty D, Nagy J, Mitra RB, et al. Ablation of peripheral dopaminergic nerves stimulates malignant tumor growth
                   by inducing vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis. Cancer Res 2004;64:5551-5.
               147.  Filipski E, King VM, Li X, Granda TG, Mormont MC, et al. Disruption of circadian coordination accelerates malignant growth in mice.
                   Pathol Biol (Paris) 2003;51:216-9.
               148.  Khalyfa A, Almendros I, Gileles-Hillel A, Akbarpour M, Trzepizur W, et al. Circulating exosomes potentiate tumor malignant properties in a
                   mouse model of chronic sleep fragmentation. Oncotarget 2016;7:54676-90.
   203   204   205   206   207   208   209   210   211   212   213