Page 64 - Read Online
P. 64

Page 370                      Sun et al. Intell Robot 2022;2(4):355­70  I http://dx.doi.org/10.20517/ir.2022.23



               Financial support and sponsorship
               This work was supported in part by the National Natural Science Foundation of China under Grant 61873161,
               52271321, 62033009, U1706224, Shanghai Rising-Star Program under Grant 20QA1404200 and Natural Sci-
               ence Foundation of Shanghai under Grant 22ZR1426700.


               Conflicts of interest
               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2022.


               REFERENCES
               1.  Cai L, Wu Y, Zhu S, Tan Z, Yi W. Bi­level programming enabled design of an intelligent maritime search and rescue system. Adv Engineer
                  Inform 2020;46:101194. DOI
               2.  Ai B, Jia M, Xu H, et al. Coverage path planning for maritime search and rescue using reinforcement learning. Ocean Engine
                  2021;241:110098. DOI
               3.  Joochim C, Phadungthin R, Srikitsuwan S. Design and development of a remotely operated underwater vehicle. 2015 16th Int Confer Res
                  Educ in Mechatronics (REM) 2015:148­53. DOI
               4.  Choi J, Lee Y, Kim T, Jung J, Choi H. Development of a ROV for visual inspection of harbor structures. 2017 IEEE Underwater Technology
                  (UT) 2017:1­4. DOI
               5.  Zhang Q, Wang H, Li B, et al. Development and sea trials of a 6000m class ROV for marine scientific research. 2018 OCEANS ­ MTS/IEEE
                  Kobe Techno­Oceans (OTO) 2018:1­6. DOI
               6.  Yue Z, Wang T. Navigation and positioning system design of an AUV underwater docking. 2016 IEEE/OES China Ocean Acoustics
                  (COA) 2016:1­6. DOI
               7.  Yu C, Zhong Y, Lian L, Xiang X. An experimental study of adaptive bounded depth control for underwater vehicles subject to thruster’s
                  dead­zone and saturation. Appl Ocean Res 2021;117:102947. DOI
               8.  Yu Z, Li K, Ji Y, Yang SX. Designs, motion mechanism, motion coordination, and communication of bionic robot fishes: a survey. Intell
                  Robot 2022;2:180­99. DOI
               9.  A. Ghilezan and M. Hnatiuc. The ROV communication and control. 2017 IEEE 23rd Int Symp Design Techn in Electr Pack (SIITME)
                  2017:336­9. DOI
               10. Zuluaga SA, Rúa S, Vásquez RE, Zuluaga CA, Correa JC. Development and implementation of a low­level control system for the
                  underwater remotely operated vehicle Visor3. OCEANS 2016 MTS/IEEE Monter 2016:1­9. DOI
               11. Park MW, Kang JI. Structural analysis on frame­cover of USV robot. 2021 21st Int Confer Control, Autom Syst (ICCAS) 2021:1649­52.
                  DOI
               12. Yang Z, Shen H, Su Y, Liao Y. Structure design of an autonomous underwater vehicle made of composite material. OCEANS 2014 ­
                  TAIPEI 2014:1­4. DOI
               13. X Li, H Xu, C Yang, H Wang, F Yu. Study on an underwater flexible manipulator based on hydraulic drive. BATH/ASME 2020 Symp
                  Fluid Power Motion Contr 2020:Virtual, Online. DOI
               14. Sivčev S, Coleman J, Omerdić E, Dooly G, Toal D. Underwater manipulators: a revi ew. Ocean engine 2018;163:431­50. DOI
               15. Aminuddin NF, Tukiran Z, Joret A, et al. Hungarian­particle filtering based segmentation for on­road visual vehicle detection and tracking.
                  2022 IEEE 4th Global Confer Life Sci Technol (LifeTech) 2022:00­3. DOI
               16. Girshick R. Fast R­CNN 2015 IEEE Int Confer Comp Vis (ICCV) 2015:1440­8. DOI
   59   60   61   62   63   64   65   66   67   68   69