Page 27 - Read Online
P. 27
Zhu et al. Intell Robot 2022;2(3):200222 I http://dx.doi.org/10.20517/ir.2022.13 Page 220
2008;56:110214. DOI
70. Zheng X, Koenig S. Robot coverage of terrain with nonuniform traversability. In: 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Piscataway, NJ, USA; 2007. pp. 375764. DOI
71. Kapanoglu M, Alikalfa M, Ozkan M, Yazici A, Parlaktuna O. A patternbased genetic algorithm for multirobot coverage path planning
minimizing completion time. J Intell Manuf 2012;23:103545. DOI
72. Yang SX, Luo C. A neural network approach to complete coverage path planning. IEEE Trans Syst Man Cybern B Cybern 2004;34:718–
24. DOI
73. Yao P, Zhao Z. Improved Glasius bioinspired neural network for target search by multiagents. Information Sci 2021;568:4053. DOI
74. Cai W, Zhang M, Zheng YR. Task assignment and path planning for multiple autonomous underwater vehicles using 3D dubins curves.
Sensors 2017;17:160726. DOI
75. Yao P, Qiu L, Qi J, Yang R. AUV path planning for coverage search of static target in ocean environment. Ocean Eng 2021;241. DOI
76. Song D, Yao P. Search for static target in nonwide area by AUV: a prior datadriven strategy. IEEE Syst J 2021;15:31858. DOI
77. Yao P, Zhu Q, Zhao R. Gaussian mixture model and selforganizing map neuralnetworkbased coverage for target search in curveshape
area. IEEE Trans Cybern 2022;52:3971–83. DOI
78. Sun P, Boukerche A. Modeling and analysis of coverage degree and target detection for autonomous underwater vehiclebased system.
IEEE Trans Veh Technol 2018;67:995971. DOI
79. Bacha S, Saadi R, Ayad MY, Aboubou A, Bahri M. A review on vehicle modeling and control technics used for autonomous vehicle path
following. In: 2017 International Conference on Green Energy Conversion Systems (GECS). Piscataway, NJ, USA; 2017. pp. 16. DOI
80. Liu X, Zhang M, Rogers E. Trajectory tracking control for autonomous underwater vehicles based on fuzzy replanning of a local desired
trajectory. IEEE Trans Veh Technol 2019;68:1165767. DOI
81. Ray S, Bhowal R, Patel P, Panaiyappan AK. An overview of the design and development of a 6 dof remotely operated vehicle for
underwater structural inspection. In: 2021 International Conference on Communication, Control and Information Sciences (ICCISC).
Piscataway, NJ, USA; 2021. pp. 16. DOI
82. Shen C, Shi Y, Buckham B. Trajectory tracking control of an autonomous underwater vehicle using lyapunovbased model predictive
control. IEEE Trans Ind Electron 2018;65:5796805. DOI
83. Li J, Xu Z, Zhu D, et al. Bioinspired intelligence with applications to robotics: a survey. Intell Robot 2022;1:58–83. DOI
84. Zhu D, Sun B. The bioinspired model based hybrid slidingmode tracking control for unmanned underwater vehicles. Eng Appl Artif
Intell 2013;26:22609. DOI
85. Sun B, Zhang W, Song A, Zhu X, Zhu D. Trajectory tracking and obstacle avoidance control of unmanned underwater vehicles based
on MPC. In: IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS). Piscataway, NJ,
USA; 2018. pp. 1–6. DOI
86. Wan L, Sun N, Liao YL. Backstepping control method for the trajectory tracking for the underactuated autonomous underwater vehicle.
AMR2013;798799:4848. DOI
87. Karkoub M, Wu HM, Hwang CL. Nonlinear trajectorytracking control of an autonomous underwater vehicle. Ocean Eng 2017;145:188
98. DOI
88. Yang SX, Meng MQH. Realtime collisionfree motion planning of a mobile robot using a Neural Dynamicsbased approach. IEEE
Trans Neural Netw 2003;14:154152. DOI
89. Li T, Zhao R, Chen CLP, Fang L, Liu C. Finitetime formation control of underactuated ships using nonlinear sliding mode control.
IEEE Trans Cybern 2018;48:324353. DOI
90. Qin J, Zhang G, Zheng WX, Kang Y. Adaptive sliding mode consensus tracking for secondorder nonlinear multiagent systems with
actuator faults. IEEE Trans Cybern 2019;49:160515. DOI
91. Zaihidee FM, Mekhilef S, Mubin M. Robust speed control of PMSM using sliding mode control (SMC)a review. Energies 2019;12:1669
96. DOI
92. Dhanasekar R, Ganesh Kumar S, Rivera M. Sliding mode control of electric drives/review. In: 2016 IEEE International Conference on
Automatica (ICAACCA). Piscataway, NJ, USA; 2016. pp. 1–7. DOI
93. Liu H, Zhang T. Fuzzy sliding mode control of robotic manipulators with kinematic and dynamic uncertainties. J DYN SYSTT ASME
2012;134. DOI
94. Slotine JJE, Coetsee JA. Adaptive sliding controller synthesis for nonlinear systems. Int J Control 1986;43:163151. DOI
95. Xu Z, X Yang S, Gadsden SA, Li J, Zhu D. Backstepping and sliding mode control for AUVs aided with bioinspired neurodynamics. In:
2021 IEEE International Conference on Robotics and Automation (ICRA). Xi’an, China; 2021. pp. 21139. DOI
96. Bai G, Meng Y, Liu L, Luo W, Gu Q. Review and comparison of path tracking based on model predictive control. Electronics 2019;8:1077
(32 pp.) . DOI
97. Dong L, Yan J, Yuan X, He H, Sun C. Functional nonlinear model predictive control based on adaptive dynamic programming. IEEE
Trans Cybern 2019;49:420618. DOI
98. Liu L, He Y, Han C. Review of model predictive control methods for timedelay systems. In: Proceedings of 2020 Chinese Intelligent
Systems Conference. Lecture Notes in Electrical Engineering (LNEE 705). vol. 1. Singapore; 2021. pp. 624–33. DOI
99. Gutierrez B, Kwak SS. Modular multilevel converters (MMCs) controlled by model predictive control with reduced calculation burden.
IEEE Trans Power Electron 2018;33:917687. DOI
100. Na J, Huang Y, Wu X, Su S, Li G. Adaptive finitetime fuzzy control of nonlinear active suspension systems with input delay. IEEE
Trans Cybern 2020;50:263950. DOI