Page 25 - Read Online
P. 25

Zhu et al. Intell Robot 2022;2(3):200­222  I http://dx.doi.org/10.20517/ir.2022.13  Page 218


               8.  Huang H, Tang Q, Li J, et al. A review on underwater autonomous environmental perception and target grasp, the challenge of robotic
                   organism capture. Ocean Eng 2020;195. DOI
               9.  Petillo S, Schmidt H. Exploiting adaptive and collaborative auv autonomy for detection and characterization of internal waves. IEEE J
                   Ocean Eng 2014;39:150­64. DOI
               10.  Panda M, Das B, Subudhi B, Pati BB. A comprehensive review of path planning algorithms for autonomous underwater vehicles. Int J
                   Autom Comput 2020;17:321­52. DOI
               11.  Hadi B, Khosravi A, Sarhadi P. A review of the path planning and formation control for multiple autonomous underwater vehicles. J
                   Intell Robot Syst 2021;101. DOI
               12.  Parker L. Heterogeneous multi­robot cooperation [Ph.D. Thesis]. Massachusetts Institute of Technology; 1994.
               13.  Kulkarni IS, Pompili D. Task allocation for networked autonomous underwater vehicles in critical missions. IEEE J Sel Areas Commun
                   2010;28:716­27. DOI
               14.  Mataric MJ. Minimizing complexity in controlling a mobile robot population. In: Proceedings. 1992 IEEE International Conference on
                   Robotics And Automation (Cat. No.92CH3140­1). Los Alamitos, CA, USA; 1992. pp. 830­5. DOI
               15.  Miyata N, Ota J, Arai T, Asama H. Cooperative transport by multiple mobile robots in unknown static environments associated with
                   real­time task assignment. IEEE Trans Robot Autom 2002;18:769­80. DOI
               16.  Turner RM. Context­mediated behavior for intelligent agents. International Journal of Human Computer Studies 1998;48:307­30. DOI
               17.  Dia H. An agent­based approach to modelling driver route choice behaviour under the influence of real­time information. Transportation
                   Research Part C: Emerging Technologies 2002;10:331­49. DOI
               18.  Ahmed A, Patel A, Brown T, et al. Task assignment for a physical agent team via a dynamic forward/reverse auction mechanism. In:
                   International Conference on Integration of Knowledge Intensive Multi­Agent Systems (IEEE Cat. No.05EX1033). Piscataway, NJ, USA;
                   2005. pp. 311­7. DOI
               19.  Akkiraju R, Keskinocak P, Murathy S, Wu F. An agent­based approach for scheduling multiple machines. Appl Intell, Int J Artif Intell
                   Neural Netw Complex Probl­Solving Technol 200;14:135­44. DOI
               20.  Atkinson ML. Results analysis of using free market auctions to distribute control of UAVs. In: Collection of Technical Papers ­ AIAA
                   3rd ”Unmanned­Unlimited” Technical Conference, Workshop, and Exhibit. vol. 2. Chicago, IL, United states; 2004. pp. 803­11. DOI
               21.  Wahl T, Howell KC. Autonomous guidance algorithm for multiple spacecraft and formation reconfiguration maneuvers. In: Advances
                   in the Astronautical Sciences. vol. 158. Napa, CA, United states; 2016. pp. 1939­56.
               22.  Yao P, Qi S. Obstacle­avoiding path planning for multiple autonomous underwater vehicles with simultaneous arrival. Sci China Technol
                   Sci 2019;62:121 – 132. DOI
               23.  Yao P, Zhao Z, Zhu Q. Path planning for autonomous underwater vehicles with simultaneous arrival in ocean environment. IEEE Systems
                   Journal 2020 Sep;14:3185­93. DOI
               24.  Tolmidis AT, Petrou L. Multi­objective optimization for dynamic task allocation in a multi­robot system. Engineering Applications of
                   Artificial Intelligence 2013;26:1458­68. DOI
               25.  Boveiri HR. An incremental ant colony optimization based approach to task assignment to processors for multiprocessor scheduling.
                   Front Inform Technol Electron Eng 2017;18:498­510. DOI
               26.  Liu C, Kroll A. Memetic algorithms for optimal task allocation in multi­robot systems for inspection problems with cooperative tasks.
                   Soft Comput 2015;19:567­84. DOI
               27.  Kohonen T. Analysis of a simple self­organizing process. Biol Cybern 1982;44:135­40. DOI
               28.  Zhu A, Yang SX. A neural network approach to dynamic task assignment of multirobots. IEEE Trans Neural Netw 2006;17:1278­87. DOI
               29.  Zhu A, Yang SX. An improved SOM­based approach to dynamic task assignment of multi­robots. In: Proceedings of the World Congress
                   on Intelligent Control and Automation (WCICA); 2010. pp. 2168­73. DOI
               30.  Huang H, Zhu D, Ding F. Dynamic task assignment and path planning for multi­AUV system in variable ocean current environment. J
                   Intell Robot Syst 2014;74:999­1012. DOI
               31.  Chow B. Assigning closely spaced targets to multiple autonomous underwater vehicles [Ph.D. Thesis]. University of Waterloo; 2009.
               32.  Zhu D, Huang H, Yang SX. Dynamic task assignment and path planning of multi­AUV system based on an improved self­organizing
                   map and velocity synthesis method in three­dimensional underwater workspace. IEEE Trans Cybern 2013;43:504­14. DOI
               33.  D’Amato E, Nardi VA, Notaro I, Scordamaglia V. A Visibility Graph approach for path planning and real­time collision avoidance
                   on maritime unmanned systems. In: 2021 IEEE International Workshop on Metrology for the Sea: Learning to Measure Sea Health
                   Parameters, MetroSea 2021 ­ Proceedings. Virtual, Online, Italy; 2021. pp. 400­5. DOI
               34.  Lam SK, Sridharan K, Srikanthan T. VLSI­efficient schemes for high­speed construction of tangent graph. Robot Auton Syst 2005;51:248­
                   60. DOI
               35.  Magid E, Lavrenov R, Svinin M, Khasianov A. Combining voronoi graph and spline­based approaches for a mobile robot path planning.
                   In: Informatics in Control, Automation and Robotics. 14th International Conference, ICINCO 2017. Revised Selected Papers: Lecture
                   Notes in Electrical Engineering (LNEE 495). Cham, Switzerland; 2020. pp. 475­96.
               36.  Wang J, Meng MQH. Optimal path planning using generalized voronoi graph and multiple potential functions. IEEE Trans Ind Electron
                   2020;67:10621­30. DOI
               37.  Dijkstra E. Communication with an automatic computer [Ph.D. Thesis]. University of Amsterdam, Netherlands; 1959.
               38.  Peter EH, Nils JN, Bertram R. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems
                   Science and Cybernetics 1968;SSC­4:100­7. DOI
               39.  Wu Y, Low KH, Lv C. Cooperative path planning for heterogeneous unmanned vehicles in a search­and­track mission aiming at an
   20   21   22   23   24   25   26   27   28   29   30