Page 25 - Read Online
P. 25
Zhu et al. Intell Robot 2022;2(3):200222 I http://dx.doi.org/10.20517/ir.2022.13 Page 218
8. Huang H, Tang Q, Li J, et al. A review on underwater autonomous environmental perception and target grasp, the challenge of robotic
organism capture. Ocean Eng 2020;195. DOI
9. Petillo S, Schmidt H. Exploiting adaptive and collaborative auv autonomy for detection and characterization of internal waves. IEEE J
Ocean Eng 2014;39:15064. DOI
10. Panda M, Das B, Subudhi B, Pati BB. A comprehensive review of path planning algorithms for autonomous underwater vehicles. Int J
Autom Comput 2020;17:32152. DOI
11. Hadi B, Khosravi A, Sarhadi P. A review of the path planning and formation control for multiple autonomous underwater vehicles. J
Intell Robot Syst 2021;101. DOI
12. Parker L. Heterogeneous multirobot cooperation [Ph.D. Thesis]. Massachusetts Institute of Technology; 1994.
13. Kulkarni IS, Pompili D. Task allocation for networked autonomous underwater vehicles in critical missions. IEEE J Sel Areas Commun
2010;28:71627. DOI
14. Mataric MJ. Minimizing complexity in controlling a mobile robot population. In: Proceedings. 1992 IEEE International Conference on
Robotics And Automation (Cat. No.92CH31401). Los Alamitos, CA, USA; 1992. pp. 8305. DOI
15. Miyata N, Ota J, Arai T, Asama H. Cooperative transport by multiple mobile robots in unknown static environments associated with
realtime task assignment. IEEE Trans Robot Autom 2002;18:76980. DOI
16. Turner RM. Contextmediated behavior for intelligent agents. International Journal of Human Computer Studies 1998;48:30730. DOI
17. Dia H. An agentbased approach to modelling driver route choice behaviour under the influence of realtime information. Transportation
Research Part C: Emerging Technologies 2002;10:33149. DOI
18. Ahmed A, Patel A, Brown T, et al. Task assignment for a physical agent team via a dynamic forward/reverse auction mechanism. In:
International Conference on Integration of Knowledge Intensive MultiAgent Systems (IEEE Cat. No.05EX1033). Piscataway, NJ, USA;
2005. pp. 3117. DOI
19. Akkiraju R, Keskinocak P, Murathy S, Wu F. An agentbased approach for scheduling multiple machines. Appl Intell, Int J Artif Intell
Neural Netw Complex ProblSolving Technol 200;14:13544. DOI
20. Atkinson ML. Results analysis of using free market auctions to distribute control of UAVs. In: Collection of Technical Papers AIAA
3rd ”UnmannedUnlimited” Technical Conference, Workshop, and Exhibit. vol. 2. Chicago, IL, United states; 2004. pp. 80311. DOI
21. Wahl T, Howell KC. Autonomous guidance algorithm for multiple spacecraft and formation reconfiguration maneuvers. In: Advances
in the Astronautical Sciences. vol. 158. Napa, CA, United states; 2016. pp. 193956.
22. Yao P, Qi S. Obstacleavoiding path planning for multiple autonomous underwater vehicles with simultaneous arrival. Sci China Technol
Sci 2019;62:121 – 132. DOI
23. Yao P, Zhao Z, Zhu Q. Path planning for autonomous underwater vehicles with simultaneous arrival in ocean environment. IEEE Systems
Journal 2020 Sep;14:318593. DOI
24. Tolmidis AT, Petrou L. Multiobjective optimization for dynamic task allocation in a multirobot system. Engineering Applications of
Artificial Intelligence 2013;26:145868. DOI
25. Boveiri HR. An incremental ant colony optimization based approach to task assignment to processors for multiprocessor scheduling.
Front Inform Technol Electron Eng 2017;18:498510. DOI
26. Liu C, Kroll A. Memetic algorithms for optimal task allocation in multirobot systems for inspection problems with cooperative tasks.
Soft Comput 2015;19:56784. DOI
27. Kohonen T. Analysis of a simple selforganizing process. Biol Cybern 1982;44:13540. DOI
28. Zhu A, Yang SX. A neural network approach to dynamic task assignment of multirobots. IEEE Trans Neural Netw 2006;17:127887. DOI
29. Zhu A, Yang SX. An improved SOMbased approach to dynamic task assignment of multirobots. In: Proceedings of the World Congress
on Intelligent Control and Automation (WCICA); 2010. pp. 216873. DOI
30. Huang H, Zhu D, Ding F. Dynamic task assignment and path planning for multiAUV system in variable ocean current environment. J
Intell Robot Syst 2014;74:9991012. DOI
31. Chow B. Assigning closely spaced targets to multiple autonomous underwater vehicles [Ph.D. Thesis]. University of Waterloo; 2009.
32. Zhu D, Huang H, Yang SX. Dynamic task assignment and path planning of multiAUV system based on an improved selforganizing
map and velocity synthesis method in threedimensional underwater workspace. IEEE Trans Cybern 2013;43:50414. DOI
33. D’Amato E, Nardi VA, Notaro I, Scordamaglia V. A Visibility Graph approach for path planning and realtime collision avoidance
on maritime unmanned systems. In: 2021 IEEE International Workshop on Metrology for the Sea: Learning to Measure Sea Health
Parameters, MetroSea 2021 Proceedings. Virtual, Online, Italy; 2021. pp. 4005. DOI
34. Lam SK, Sridharan K, Srikanthan T. VLSIefficient schemes for highspeed construction of tangent graph. Robot Auton Syst 2005;51:248
60. DOI
35. Magid E, Lavrenov R, Svinin M, Khasianov A. Combining voronoi graph and splinebased approaches for a mobile robot path planning.
In: Informatics in Control, Automation and Robotics. 14th International Conference, ICINCO 2017. Revised Selected Papers: Lecture
Notes in Electrical Engineering (LNEE 495). Cham, Switzerland; 2020. pp. 47596.
36. Wang J, Meng MQH. Optimal path planning using generalized voronoi graph and multiple potential functions. IEEE Trans Ind Electron
2020;67:1062130. DOI
37. Dijkstra E. Communication with an automatic computer [Ph.D. Thesis]. University of Amsterdam, Netherlands; 1959.
38. Peter EH, Nils JN, Bertram R. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics 1968;SSC4:1007. DOI
39. Wu Y, Low KH, Lv C. Cooperative path planning for heterogeneous unmanned vehicles in a searchandtrack mission aiming at an