Page 26 - Read Online
P. 26
Page 219 Zhu et al. Intell Robot 2022;2(3):200222 I http://dx.doi.org/10.20517/ir.2022.13
underwater target. IEEE Trans Veh Technol 2020;69:678287. DOI
40. Singh Y, Sharma S, Sutton R, Hatton D, Khan A. A constrained A* approach towards optimal path planning for an unmanned surface
vehicle in a maritime environment containing dynamic obstacles and ocean currents. Ocean Engineering 2018;169:187201. DOI
41. Khatib O. Realtime obstacle avoidance for manipulators and mobile robots. In: Proceedings. 1985 IEEE International Conference on
Robotics and Automation. vol. 2; 1985. pp. 5005. DOI
42. Zhu D, Yang SX. Path planning method for unmanned underwater vehicles eliminating effect of currents based on artificial potential
field. J Navig 2021;74:95567. DOI
43. Ralli E, Hirzinger G. Fast path planning for robot manipulators using numerical potential fields in the configuration space. In: IROS ’94.
Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems. Advanced Robotic Systems and the Real
World (Cat. No.94CH34470). vol. vol.3. New York, NY, USA; 1994. pp. 19229. DOI
44. Zhou Z, Wang J, Zhu Z, Yang D, Wu J. Tangent navigated robot path planning strategy using particle swarm optimized artificial potential
field. Optik 2018;158:63951. DOI
45. Lin Z, Yue M, Wu X, Tian H. An improved artificial potential field method for path planning of mobile robot with subgoal adaptive
selection. In: Intelligent Robotics and Applications. 12th International Conference, ICIRA 2019. Proceedings: Lecture Notes in Artificial
Intelligence (LNAI 11740). vol. pt.I. Cham, Switzerland; 2019. pp. 21120. DOI
46. Xin L, ZhanQing W, XuYang C. Path planning with improved artificial potential field method based on decision tree. In: 2020 27th
Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). Piscataway, NJ, USA; 2020. p. 5 pp. DOI
47. Abdur Rahman M, Abul Kalam Azad M. To escape local minimum problem for multiagent path planning using improved artificial
potential fieldbased regression search method. In: ACM International Conference Proceeding Series. Singapore, Singapore; 2017. pp.
3716. DOI
48. Alvarez A, Caiti A, Onken R. Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J Oceanic
Eng 2004;29:418–29. DOI
49. Cheng CT, Fallahi K, Leung H, Tse CK. A genetic algorithminspired UUV path planner based on dynamic programming. IEEE Trans
Syst Man Cybern, C, Appl Rev 2012;42:112834. DOI
50. Ma YN, Gong YJ, Xiao CF, Gao Y, Zhang J. Path planning for autonomous underwater vehicles: an ant colony algorithm incorporating
alarm pheromone. IEEE Trans Veh Technol 2019;68:141–54. DOI
51. Han G, Zhou Z, Zhang T, et al. Antcolonybased completecoverage pathplanning algorithm for underwater gliders in ocean areas with
thermoclines. IEEE Trans Veh Technol 2020;69:895971. DOI
52. Mo H, Xu L. Research of biogeography particle swarm optimization for robot path planning. Neurocomputing 2015;148:919. DOI
53. Lee CC. Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Trans Syst Man Cybern 1990;20:40418. DOI
54. Lee CC. Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Trans Syst Man Cybern 1990;20:41935. DOI
55. Kim YG, Bui LD. An obstacleavoidance technique for autonomous underwater vehicles based on BKproducts of fuzzy relation. Fuzzy
Sets Syst 2006;157:56077. DOI
56. Ali F, Kim EK, Kim YG. Type2 fuzzy ontologybased semantic knowledge for collision avoidance of autonomous underwater vehicles.
Inf Sci 2015;295:44164. DOI
57. LeBlanc K, Saffiotti A. Multirobot object localization: a fuzzy fusion approach. IEEE Trans Syst Man Cybern B, Cybern 2009;39:1259
76. DOI
58. Ling S. A realtime collisionfree path planning of a rust removal robot using an improved neural network. J Shanghai Jiaotong Univ,
Sci 2017;22:63340. DOI
59. Ghatee M, Mohades A. Motion planning in order to optimize the length and clearance applying a Hopfield neural network. Expert Syst
Appl 2009;36:468895. DOI
60. Li H, Yang SX, Biletskiy Y. Neural network based path planning for a multirobot system with moving obstacles. In: 2008 IEEE
International Conference on Automation Science and Engineering (CASE 2008). Piscataway, NJ, USA; 2008. pp. 1638. DOI
61. Zhu D, Yang SX. Bioinspired neural networkbased optimal path planning for UUVs under the effect of ocean currents. IEEE Trans
Veh Technol 2021. DOI
62. Noguchi Y, Maki T. Path planning method based on artificial potential field and reinforcement learning for intervention AUVs. In: 2019
IEEE Underwater Technology (UT). Piscataway, NJ, USA; 2019. pp. 16. DOI
63. Li Z, Luo X. Autonomous underwater vehicles (AUVs) path planning based on Deep Reinforcement Learning. In: 2021 11th Interna
tional Conference on Intelligent Control and Information Processing (ICICIP). Piscataway, NJ, USA; 2021. pp. 1259. DOI
64. Wang Z, Zhang S, Feng X, Sui Y. Autonomous underwater vehicle path planning based on actormulticritic reinforcement learning.
Proc Inst Mech Eng, I, J Syst Control Eng 2021;235:178796. DOI
65. Batalin MA, Sukhatme GS. Spreading out: a local approach to multirobot coverage. In: Distributed Autonomous Robotic Systems 5.
Tokyo; 2002. pp. 37382.
66. Parlaktuna O, Sipahioglu A, Kirlik G, Yazici A. Multirobot sensorbased coverage path planning using capacitated arc routing approach.
In: 2009 IEEE International Conference on Control Applications (CCA). Piscataway, NJ, USA; 2009. pp. 114651. DOI
67. Janchiv A, Batsaikhan D, Kim Gh, Lee SG. Complete coverage path planning for multirobots based on. In: 2011 11th International
Conference on Control, Automation and Systems; 2011. pp. 824–27.
68. Rekleitis I, New A, Rankin E, Choset H. Efficient boustrophedon multirobot coverage: an algorithmic approach. Ann Math Artif Intell
2008;52:10942. DOI
69. Hazon N, Kaminka GA. On redundancy, efficiency, and robustness in coverage for multiple robots. Robotics and Autonomous Systems