Page 31 - Read Online
P. 31
Wu et al. Intell Robot 2022;2(2):10529 I http://dx.doi.org/10.20517/ir.2021.20 Page 129
120. Landrieu L, Simonovsky M. Largescale point cloud semantic segmentation with superpoint graphs. In: Proceedings of the IEEE
conference on computer vision and pattern recognition; 2018. pp. 4558–67. DOI
121. Hu Q, Yang B, Xie L, et al. Randlanet: efficient semantic segmentation of largescale point clouds. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition; 2020. pp. 11108–17. DOI
122. Fan S, Dong Q, Zhu F, et al. SCFNet: learning spatial contextual features for largescale point cloud segmentation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021. pp. 14504–13. DOI
123. Huang R, Zhang W, Kundu A, et al. An lstm approach to temporal 3d object detection in lidar point clouds. In: European Conference
on Computer Vision. Springer; 2020. pp. 266–82. DOI
124. Yuan Z, Song X, Bai L, Wang Z, Ouyang W. Temporalchannel transformer for 3d lidarbased video object detection for autonomous
driving. IEEE Transactions on Circuits and Systems for Video Technology 2021. DOI
125. Zhou Y, Zhu H, Li C, et al. TempNet: Online Semantic Segmentation on LargeScale Point Cloud Series. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision; 2021. pp. 7118–27. DOI