Page 31 - Read Online
P. 31

Wu et al. Intell Robot 2022;2(2):105­29  I http://dx.doi.org/10.20517/ir.2021.20    Page 129


               120. Landrieu L, Simonovsky M. Large­scale point cloud semantic segmentation with superpoint graphs. In: Proceedings of the IEEE
                   conference on computer vision and pattern recognition; 2018. pp. 4558–67. DOI
               121. Hu Q, Yang B, Xie L, et al. Randla­net: efficient semantic segmentation of large­scale point clouds. In: Proceedings of the IEEE/CVF
                   Conference on Computer Vision and Pattern Recognition; 2020. pp. 11108–17. DOI
               122. Fan S, Dong Q, Zhu F, et al. SCF­Net: learning spatial contextual features for large­scale point cloud segmentation. In: Proceedings of
                   the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021. pp. 14504–13. DOI
               123. Huang R, Zhang W, Kundu A, et al. An lstm approach to temporal 3d object detection in lidar point clouds. In: European Conference
                   on Computer Vision. Springer; 2020. pp. 266–82. DOI
               124. Yuan Z, Song X, Bai L, Wang Z, Ouyang W. Temporal­channel transformer for 3d lidar­based video object detection for autonomous
                   driving. IEEE Transactions on Circuits and Systems for Video Technology 2021. DOI
               125. Zhou Y, Zhu H, Li C, et al. TempNet: Online Semantic Segmentation on Large­Scale Point Cloud Series. In: Proceedings of the
                   IEEE/CVF International Conference on Computer Vision; 2021. pp. 7118–27. DOI
   26   27   28   29   30   31   32   33   34   35   36