Page 29 - Read Online
P. 29

Wu et al. Intell Robot 2022;2(2):105­29  I http://dx.doi.org/10.20517/ir.2021.20    Page 127


               61.  Liu Z, Zhao X, Huang T, et al. Tanet: Robust 3d object detection from point clouds with triple attention. In: Proceedings of the AAAI
                   Conference on Artificial Intelligence. vol. 34; 2020. pp. 11677–84. DOI
               62.  Zheng W, Tang W, Jiang L, Fu CW. SE­SSD: self­ensembling single­stage object detector from point cloud. In: Proceedings of the
                   IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021. pp. 14494–503. DOI
               63.  Qi CR, Zhou Y, Najibi M, et al. Offboard 3D object detection from point cloud sequences. In: Proceedings of the IEEE/CVF Conference
                   on Computer Vision and Pattern Recognition; 2021. pp. 6134–44. DOI
               64.  Yoo JH, Kim Y, Kim J, Choi JW. 3d­cvf: Generating joint camera and lidar features using cross­view spatial feature fusion for 3d object
                   detection. In: 16th European Conference on Computer Vision, ECCV 2020. Springer; 2020. pp. 720–36. DOI
               65.  Shin K, Kwon YP, Tomizuka M. Roarnet: a robust 3d object detection based on region approximation refinement. In: 2019 IEEE
                   Intelligent Vehicles Symposium. IEEE; 2019. pp. 2510–15. DOI
               66.  Vora S, Lang AH, Helou B, Beijbom O. Pointpainting: sequential fusion for 3d object detection. In: Proceedings of the IEEE/CVF
                   Conference on Computer Vision and Pattern Recognition; 2020. pp. 4604–12. DOI
               67.  Zhu M, Ma C, Ji P, Yang X. Cross­modality 3d object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications
                   of Computer Vision; 2021. pp. 3772–81. DOI
               68.  Huang T, Liu Z, Chen X, Bai X. Epnet: Enhancing point features with image semantics for 3d object detection. In: European Conference
                   on Computer Vision. Springer; 2020. pp. 35–52. DOI
               69.  Pang S, Morris D, Radha H. CLOCs: Camera­LiDAR object candidates fusion for 3D object detection. In: 2020 IEEE/RSJ International
                   Conference on Intelligent Robots and Systems. IEEE; 2020. pp. 10386–93. DOI
               70.  Yan Y, Mao Y, Li B. Second: Sparsely embedded convolutional detection. Sensors 2018;18:3337. DOI
               71.  Cai Z, Vasconcelos N. Cascade r­cnn: High quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis
                   and Machine Intelligence 2019. DOI
               72.  Vaquero V, del Pino I, Moreno­Noguer F, et al. Dual­Branch CNNs for Vehicle Detection and Tracking on LiDAR Data. IEEE Transac­
                   tions on Intelligent Transportation Systems 2020. DOI
               73.  Shi S, Guo C, Yang J, Li H. Pv­rcnn: the top­performing lidar­only solutions for 3d detection/3d tracking/domain adaptation of waymo
                   open dataset challenges. arXiv preprint arXiv:200812599 2020. Available from: https://arxiv.org/abs/2008.12599.
               74.  Qi H, Feng C, Cao Z, Zhao F, Xiao Y. P2B: point­to­box network for 3d object tracking in point clouds. In: Proceedings of the IEEE/CVF
                   Conference on Computer Vision and Pattern Recognition; 2020. pp. 6329–38. DOI
               75.  Zhou X, Koltun V, Krahenbuhl P. Tracking objects as points. In: European Conference on Computer Vision; 2020. pp. 474–90. Available
                   from: https://par.nsf.gov/servlets/purl/10220677.
               76.  Yin T, Zhou X, Krahenbuhl P. Center­based 3d object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer
                   Vision and Pattern Recognition; 2021. pp. 11784–93. DOI
               77.  Li Y, Zhu J. A scale adaptive kernel correlation filter tracker with feature integration. In: European conference on computer vision.
                   Springer; 2014. pp. 254–65. DOI
               78.  Mueller M, Smith N, Ghanem B. Context­aware correlation filter tracking. In: Proceedings of the IEEE Conference on Computer Vision
                   and Pattern Recognition; 2017. pp. 1396–404. DOI
               79.  Zarzar Torano JA. Modular autonomous taxiing simulation and 3D siamese vehicle tracking [D]. King Abdullah University of Science
                   and Technology. Thuwal, Saudi Arabia; 2019. Available from: https://repository.kaust.edu.sa/handle/10754/644892.
               80.  Giancola S, Zarzar J, Ghanem B. Leveraging shape completion for 3d siamese tracking. In: Proceedings of the IEEE Conference on
                   Computer Vision and Pattern Recognition; 2019. pp. 1359–68. DOI
               81.  Zarzar J, Giancola S, Ghanem B. Efficient tracking proposals using 2D­3D siamese networks on lidar. arXiv preprint arXiv:190310168
                   2019. Available from: https://deepai.org/publication/efficient­tracking­proposals­using­2d­3d­siamese­networks­on­lidar.
               82.  Cui Y, Fang Z, Zhou S. Point siamese network for person tracking using 3D point clouds. Sensors 2020;20:143. DOI
               83.  Wang Z, Xie Q, Lai YK, et al. MLVSNet: Multi­Level Voting Siamese Network for 3D Visual Tracking. In: Proceedings of the
                   IEEE/CVF International Conference on Computer Vision; 2021. pp. 3101–10. DOI
               84.  Zheng C, Yan X, Gao J, et al. Box­aware feature enhancement for single object tracking on point clouds. In: Proceedings of the IEEE/CVF
                   International Conference on Computer Vision; 2021. pp. 13199–208. DOI
               85.  Manghat SK, El­Sharkawy M. A multi sensor real­time tracking with LiDAR and camera. In: 2020 10th Annual Computing and
                   Communication Workshop and Conference. IEEE; 2020. pp. 0668–72. DOI
               86.  Frossard D, Urtasun R. End­to­end learning of multi­sensor 3d tracking by detection. In: 2018 IEEE International Conference on
                   Robotics and Automation. IEEE; 2018. pp. 635–42. DOI
               87.  Simon M, Amende K, Kraus A, et al. Complexer­YOLO: real­time 3D object detection and tracking on semantic point clouds. In:
                   Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; 2019. pp. 0–0. DOI
               88.  Zou H, Cui J, Kong X, et al. F­siamese tracker: a frustum­based double siamese network for 3d single object tracking. In: 2020 IEEE/RSJ
                   International Conference on Intelligent Robots and Systems (IROS). IEEE; 2020. pp. 8133–39. DOI
               89.  Kirillov A, He K, Girshick R, Rother C, Dollár P. Panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer
                   Vision and Pattern Recognition; 2019. pp. 9404–13. Available from: https://openaccess.thecvf.com/content_CVPR_2019/papers/Kirillo
                   v_Panoptic_Segmentation_CVPR_2019_paper.pdf.
               90.  Milioto A, Behley J, McCool C, Stachniss C. Lidar panoptic segmentation for autonomous driving. In: 2020 IEEE/RSJ International
                   Conference on Intelligent Robots and Systems (IROS). IEEE; 2020. pp. 8505–12. DOI
               91.  Behley J, Milioto A, Stachniss C. A benchmark for LiDAR­based panoptic segmentation based on KITTI. In: 2021 IEEE International
   24   25   26   27   28   29   30   31   32   33   34