Page 29 - Read Online
P. 29
Wu et al. Intell Robot 2022;2(2):10529 I http://dx.doi.org/10.20517/ir.2021.20 Page 127
61. Liu Z, Zhao X, Huang T, et al. Tanet: Robust 3d object detection from point clouds with triple attention. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 34; 2020. pp. 11677–84. DOI
62. Zheng W, Tang W, Jiang L, Fu CW. SESSD: selfensembling singlestage object detector from point cloud. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021. pp. 14494–503. DOI
63. Qi CR, Zhou Y, Najibi M, et al. Offboard 3D object detection from point cloud sequences. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition; 2021. pp. 6134–44. DOI
64. Yoo JH, Kim Y, Kim J, Choi JW. 3dcvf: Generating joint camera and lidar features using crossview spatial feature fusion for 3d object
detection. In: 16th European Conference on Computer Vision, ECCV 2020. Springer; 2020. pp. 720–36. DOI
65. Shin K, Kwon YP, Tomizuka M. Roarnet: a robust 3d object detection based on region approximation refinement. In: 2019 IEEE
Intelligent Vehicles Symposium. IEEE; 2019. pp. 2510–15. DOI
66. Vora S, Lang AH, Helou B, Beijbom O. Pointpainting: sequential fusion for 3d object detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition; 2020. pp. 4604–12. DOI
67. Zhu M, Ma C, Ji P, Yang X. Crossmodality 3d object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision; 2021. pp. 3772–81. DOI
68. Huang T, Liu Z, Chen X, Bai X. Epnet: Enhancing point features with image semantics for 3d object detection. In: European Conference
on Computer Vision. Springer; 2020. pp. 35–52. DOI
69. Pang S, Morris D, Radha H. CLOCs: CameraLiDAR object candidates fusion for 3D object detection. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE; 2020. pp. 10386–93. DOI
70. Yan Y, Mao Y, Li B. Second: Sparsely embedded convolutional detection. Sensors 2018;18:3337. DOI
71. Cai Z, Vasconcelos N. Cascade rcnn: High quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 2019. DOI
72. Vaquero V, del Pino I, MorenoNoguer F, et al. DualBranch CNNs for Vehicle Detection and Tracking on LiDAR Data. IEEE Transac
tions on Intelligent Transportation Systems 2020. DOI
73. Shi S, Guo C, Yang J, Li H. Pvrcnn: the topperforming lidaronly solutions for 3d detection/3d tracking/domain adaptation of waymo
open dataset challenges. arXiv preprint arXiv:200812599 2020. Available from: https://arxiv.org/abs/2008.12599.
74. Qi H, Feng C, Cao Z, Zhao F, Xiao Y. P2B: pointtobox network for 3d object tracking in point clouds. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition; 2020. pp. 6329–38. DOI
75. Zhou X, Koltun V, Krahenbuhl P. Tracking objects as points. In: European Conference on Computer Vision; 2020. pp. 474–90. Available
from: https://par.nsf.gov/servlets/purl/10220677.
76. Yin T, Zhou X, Krahenbuhl P. Centerbased 3d object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition; 2021. pp. 11784–93. DOI
77. Li Y, Zhu J. A scale adaptive kernel correlation filter tracker with feature integration. In: European conference on computer vision.
Springer; 2014. pp. 254–65. DOI
78. Mueller M, Smith N, Ghanem B. Contextaware correlation filter tracking. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition; 2017. pp. 1396–404. DOI
79. Zarzar Torano JA. Modular autonomous taxiing simulation and 3D siamese vehicle tracking [D]. King Abdullah University of Science
and Technology. Thuwal, Saudi Arabia; 2019. Available from: https://repository.kaust.edu.sa/handle/10754/644892.
80. Giancola S, Zarzar J, Ghanem B. Leveraging shape completion for 3d siamese tracking. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition; 2019. pp. 1359–68. DOI
81. Zarzar J, Giancola S, Ghanem B. Efficient tracking proposals using 2D3D siamese networks on lidar. arXiv preprint arXiv:190310168
2019. Available from: https://deepai.org/publication/efficienttrackingproposalsusing2d3dsiamesenetworksonlidar.
82. Cui Y, Fang Z, Zhou S. Point siamese network for person tracking using 3D point clouds. Sensors 2020;20:143. DOI
83. Wang Z, Xie Q, Lai YK, et al. MLVSNet: MultiLevel Voting Siamese Network for 3D Visual Tracking. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision; 2021. pp. 3101–10. DOI
84. Zheng C, Yan X, Gao J, et al. Boxaware feature enhancement for single object tracking on point clouds. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision; 2021. pp. 13199–208. DOI
85. Manghat SK, ElSharkawy M. A multi sensor realtime tracking with LiDAR and camera. In: 2020 10th Annual Computing and
Communication Workshop and Conference. IEEE; 2020. pp. 0668–72. DOI
86. Frossard D, Urtasun R. Endtoend learning of multisensor 3d tracking by detection. In: 2018 IEEE International Conference on
Robotics and Automation. IEEE; 2018. pp. 635–42. DOI
87. Simon M, Amende K, Kraus A, et al. ComplexerYOLO: realtime 3D object detection and tracking on semantic point clouds. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops; 2019. pp. 0–0. DOI
88. Zou H, Cui J, Kong X, et al. Fsiamese tracker: a frustumbased double siamese network for 3d single object tracking. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE; 2020. pp. 8133–39. DOI
89. Kirillov A, He K, Girshick R, Rother C, Dollár P. Panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition; 2019. pp. 9404–13. Available from: https://openaccess.thecvf.com/content_CVPR_2019/papers/Kirillo
v_Panoptic_Segmentation_CVPR_2019_paper.pdf.
90. Milioto A, Behley J, McCool C, Stachniss C. Lidar panoptic segmentation for autonomous driving. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE; 2020. pp. 8505–12. DOI
91. Behley J, Milioto A, Stachniss C. A benchmark for LiDARbased panoptic segmentation based on KITTI. In: 2021 IEEE International