Page 27 - Read Online
P. 27

Wu et al. Intell Robot 2022;2(2):105­29  I http://dx.doi.org/10.20517/ir.2021.20    Page 125


               REFERENCES
               1.  Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the
                   IEEE conference on computer vision and pattern recognition; 2017. pp. 652–60. DOI
               2.  Qi CR, Yi L, Su H, Guibas LJ. PointNet++: Deep hierarchical feature learning on point sets in a metric space. Advances in Neural
                   Information Processing Systems 2017;30. DOI
               3.  Krispel G, Opitz M, Waltner G, Possegger H, Bischof H. Fuseseg: Lidar point cloud segmentation fusing multi­modal data. In: Proceed­
                   ings of the IEEE/CVF Winter Conference on Applications of Computer Vision; 2020. pp. 1874–83. DOI
               4.  Xu D, Anguelov D, Jain A. Pointfusion: Deep sensor fusion for 3d bounding box estimation. In: Proceedings of the IEEE conference
                   on computer vision and pattern recognition; 2018. pp. 244–53. DOI
               5.  Guo Y, Wang H, Hu Q, et al. Deep learning for 3d point clouds: A survey. IEEE transactions on pattern analysis and machine intelligence
                   2020. DOI
               6.  Li Y, Ma L, Zhong Z, et al. Deep learning for lidar point clouds in autonomous driving: A review. IEEE Transactions on Neural Networks
                   and Learning Systems 2020;32:3412–32. DOI
               7.  Liu W, Sun J, Li W, Hu T, Wang P. Deep learning on point clouds and its application: A survey. Sensors 2019;19:4188. DOI
               8.  Ioannidou A, Chatzilari E, Nikolopoulos S, Kompatsiaris I. Deep learning advances in computer vision with 3d data: A survey. ACM
                   Computing Surveys (CSUR) 2017;50:1–38. DOI
               9.  Feng D, Haase­Schütz C, Rosenbaum L, et al. Deep multi­modal object detection and semantic segmentation for autonomous driving:
                   Datasets, methods, and challenges. IEEE Transactions on Intelligent Transportation Systems 2020;22:1341–60. DOI
               10.  Wang Z, Wu Y, Niu Q. Multi­sensor fusion in automated driving: A survey. Ieee Access 2019;8:2847–68. DOI
               11.  Cui Y, Chen R, Chu W, et al. Deep learning for image and point cloud fusion in autonomous driving: A review. IEEE Transactions on
                   Intelligent Transportation Systems 2021. DOI
               12.  Chen X, Ma H, Wan J, Li B, Xia T. Multi­view 3d object detection network for autonomous driving. In: Proceedings of the IEEE
                   Conference on Computer Vision and Pattern Recognition; 2017. pp. 1907–15. DOI
               13.  Xu J, Zhang R, Dou J, et al. RPVNet: a deep and efficient range­point­voxel fusion network for LiDAR point cloud segmentation. In:
                   Proceedings of the IEEE/CVF International Conference on Computer Vision; 2021. pp. 16024–33. DOI
               14.  Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE conference on
                   computer vision and pattern recognition. IEEE; 2012. pp. 3354–61. DOI
               15.  De Deuge M, Quadros A, Hung C, Douillard B. Unsupervised feature learning for classification of outdoor 3d scans. In: Australasian
                   Conference on Robitics and Automation. vol. 2; 2013. p. 1. DOI
               16.  Uy MA, Pham QH, Hua BS, Nguyen T, Yeung SK. Revisiting point cloud classification: A new benchmark dataset and classification
                   model on real­world data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision; 2019. pp. 1588–97. DOI
               17.  Varney N, Asari VK, Graehling Q. DALES: a large­scale aerial LiDAR data set for semantic segmentation. In: Proceedings of the
                   IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops; 2020. pp. 186–87. DOI
               18.  Ye Z, Xu Y, Huang R, et al. Lasdu: A large­scale aerial lidar dataset for semantic labeling in dense urban areas. ISPRS International
                   Journal of Geo­Information 2020;9:450. DOI
               19.  Li X, Li C, Tong Z, et al. Campus3d: A photogrammetry point cloud benchmark for hierarchical understanding of outdoor scene. In:
                   Proceedings of the 28th ACM International Conference on Multimedia; 2020. pp. 238–46. DOI
               20.  Tan W, Qin N, Ma L, et al. Toronto­3D: a large­scale mobile lidar dataset for semantic segmentation of urban roadways. In: Proceedings
                   of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops; 2020. pp. 202–3. DOI
               21.  Riemenschneider H, Bódis­Szomorú A, Weissenberg J, Van Gool L. Learning where to classify in multi­view semantic segmentation.
                   In: European Conference on Computer Vision. Springer; 2014. pp. 516–32. DOI
               22.  Chang A, Dai A, Funkhouser T, et al. Matterport3D: Learning from RGB­D Data in Indoor Environments. In: 2017 International
                   Conference on 3D Vision (3DV). IEEE Computer Society; 2017. pp. 667–76. DOI
               23.  Patil A, Malla S, Gang H, Chen YT. The h3d dataset for full­surround 3d multi­object detection and tracking in crowded urban scenes.
                   In: 2019 International Conference on Robotics and Automation. IEEE; 2019. pp. 9552–57. DOI
               24.  Chang MF, Lambert J, Sangkloy P, et al. Argoverse: 3d tracking and forecasting with rich maps. In: Proceedings of the IEEE Conference
                   on Computer Vision and Pattern Recognition; 2019. pp. 8748–57. DOI
               25.  Kesten R, Usman M, Houston J, et al. Lyft level 5 av dataset 2019. urlhttps://level5 lyft com/dataset 2019. Available from: https:
                   //level5.lyft.com/dataset.
               26.  Sun P, Kretzschmar H, Dotiwalla X, et al. Scalability in perception for autonomous driving: Waymo open dataset. In: Proceedings of
                   the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. pp. 2446–54. DOI
               27.  Caesar H, Bankiti V, Lang AH, et al. nuscenes: A multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF
                   Conference on Computer Vision and Pattern Recognition; 2020. pp. 11621–31. DOI
               28.  Qian K, Zhu S, Zhang X, Li LE. Robust multimodal vehicle detection in foggy weather using complementary lidar and radar signals. In:
                   Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021. pp. 444–53. DOI
               29.  Zhang Z, Hua BS, Yeung SK. ShellNet:Efficient point cloud convolutional neural networks using concentric shells statistics. 2019
                   IEEE/CVF International Conference on Computer Vision 2019:1607–16. DOI
               30.  Komarichev A, Zhong Z, Hua J. A­CNN: Annularly convolutional neural networks on point clouds. 2019 IEEE/CVF Conference on
                   Computer Vision and Pattern Recognition 2019:7413–22. DOI
               31.  Wu Z, Song S, Khosla A, et al. 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE conference on
   22   23   24   25   26   27   28   29   30   31   32