Page 30 - Read Online
P. 30
Page 128 Wu et al. Intell Robot 2022;2(2):10529 I http://dx.doi.org/10.20517/ir.2021.20
Conference on Robotics and Automation. IEEE; 2021. pp. 13596–603. DOI
92. Engelmann F, Kontogianni T, Schult J, Leibe B. Know what your neighbors do: 3D semantic segmentation of point clouds. In: Proceed
ings of the European Conference on Computer Vision Workshops; 2018. pp. 395–409. DOI
93. Yang J, Zhang Q, Ni B, et al. Modeling Point Clouds With SelfAttention and Gumbel Subset Sampling. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition 2019:3318–27. DOI
94. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on
computer vision and pattern recognition; 2015. pp. 3431–40. DOI
95. Varga R, Costea A, Florea H, Giosan I, Nedevschi S. Supersensor for 360degree environment perception: Point cloud segmentation
using image features. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems; 2017. pp. 1–8. DOI
96. Piewak F, Pinggera P, Schafer M, et al. Boosting lidarbased semantic labeling by crossmodal training data generation. In: Proceedings
of the European Conference on Computer Vision Workshops; 2018. pp. 0–0. DOI
97. Alonso I, Riazuelo L, Montesano L, Murillo AC. 3DMiniNet: Learning a 2D Representation From Point Clouds for Fast and Efficient
3D LIDAR Semantic Segmentation. IEEE Robotics and Automation Letters 2020;5:5432–39. DOI
98. Alonso I, Riazuelo L, Murillo AC. MiniNet: an efficient semantic segmentation convnet for realtime robotic applications. IEEE
Transactions on Robotics 2020;36:1340–47. DOI
99. Ronneberger O, Fischer P, Brox T. Unet: Convolutional networks for biomedical image segmentation. In: International Conference on
Medical image computing and computerassisted intervention. Springer; 2015. pp. 234–41. DOI
100. Biasutti P, Lepetit V, Aujol JF, Brédif M, Bugeau A. LUNet: an efficient network for 3D LiDAR point cloud semantic segmentation
based on endtoendlearned 3D features and UNet. 2019 IEEE/CVF International Conference on Computer Vision Workshop 2019:942–
50. DOI
101. Xu J, Gong J, Zhou J, et al. SceneEncoder: sceneaware semantic segmentation of point clouds with a learnable scene descriptor. In:
29th International Joint Conference on Artificial Intelligence (IJCAI 2020). International Joint Conferences on Artificial Intelligence;
2021. pp. 601–7. DOI
102. Wu B, Wan A, Yue X, Keutzer K. Squeezeseg: Convolutional neural nets with recurrent crf for realtime roadobject segmentation from
3d lidar point cloud. In: 2018 IEEE International Conference on Robotics and Automation. IEEE; 2018. pp. 1887–93. DOI
103. Wang Y, Shi T, Yun P, Tai L, Liu M. Pointseg: Realtime semantic segmentation based on 3d lidar point cloud. arXiv preprint
arXiv:180706288 2018. Available from: https://arxiv.org/abs/1807.06288.
104. Iandola FN, Moskewicz MW, Ashraf K, et al. SqueezeNet: AlexNetlevel accuracy with 50x fewer parameters and <1MB model size.
ArXiv 2017;abs/1602.07360. Available from: https://arxiv.org/abs/1602.07360.
105. Hua B, Tran M, Yeung S. Pointwise convolutional neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition; 2018. pp. 984–93. DOI
106. Engelmann F, Kontogianni T, Leibe B. Dilated point convolutions: On the receptive field size of point convolutions on 3d point clouds.
In: 2020 IEEE International Conference on Robotics and Automation. IEEE; 2020. pp. 9463–69. DOI
107. Dai A, Nießner M. 3dmv: Joint 3dmultiview prediction for 3d semantic scene segmentation. In: Proceedings of the European Confer
ence on Computer Vision; 2018. pp. 452–68. DOI
108. Wang J, Sun B, Lu Y. Mvpnet: Multiview point regression networks for 3d object reconstruction from a single image. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 33; 2019. pp. 8949–56. DOI
109. Zhuang Z, Li R, Jia K, et al. Perceptionaware Multisensor Fusion for 3D LiDAR Semantic Segmentation. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision; 2021. pp. 16280–90. DOI
110. Su H, Jampani V, Sun D, et al. SPLATNet: Sparse Lattice Networks for Point Cloud Processing. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition 2018:2530–39. DOI
111. Yi L, Zhao W, Wang H, Sung M, Guibas L. GSPN: Generative shape proposal network for 3D instance segmentation in point cloud.
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019:3942–51. DOI
112. Yang B, Wang J, Clark R, et al. Learning object bounding boxes for 3D Instance segmentation on point clouds. Advances in Neural
Information Processing Systems 2019;32:6740–49. Available from: https://proceedings.neurips.cc/paper/2019/file/d0aa518d4d3bfc721
aa0b8ab4ef32269Paper.pdf.
113. Zhou D, Fang J, Song X, et al. Joint 3D instance segmentation and object detection for autonomous driving. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition; 2020. pp. 1836–46. DOI
114. Wu B, Zhou X, Zhao S, Yue X, Keutzer K. SqueezeSegV2: improved model structure and unsupervised domain adaptation for roadobject
segmentation from a lidar point cloud. 2019 International Conference on Robotics and Automation 2019:4376–82. DOI
115. Hou J, Dai A, Nießner M. 3DSIS: 3D semantic instance segmentation of RGBD scans. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition 2019:4416–25. DOI
116. Narita G, Seno T, Ishikawa T, Kaji Y. PanopticFusion: online volumetric semantic mapping at the level of stuff and things. 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2019:4205–12. DOI
117. Qi CR, Liu W, Wu C, Su H, Guibas L. Frustum pointnets for 3D object detection from RGBD data. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition 2018:918–27. DOI
118. Elich C, Engelmann F, Kontogianni T, Leibe B. 3D Bird’seyeview instance segmentation. In: German Conference on Pattern Recog
nition. Springer; 2019. pp. 48–61. DOI
119. Komarichev A, Zhong Z, Hua J. ACNN: annularly convolutional neural networks on point clouds. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition; 2019. pp. 7413–22. DOI