Page 30 - Read Online
P. 30

Page 128                          Wu et al. Intell Robot 2022;2(2):105­29  I http://dx.doi.org/10.20517/ir.2021.20


                   Conference on Robotics and Automation. IEEE; 2021. pp. 13596–603. DOI
               92.  Engelmann F, Kontogianni T, Schult J, Leibe B. Know what your neighbors do: 3D semantic segmentation of point clouds. In: Proceed­
                   ings of the European Conference on Computer Vision Workshops; 2018. pp. 395–409. DOI
               93.  Yang J, Zhang Q, Ni B, et al. Modeling Point Clouds With Self­Attention and Gumbel Subset Sampling. 2019 IEEE/CVF Conference
                   on Computer Vision and Pattern Recognition 2019:3318–27. DOI
               94.  Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on
                   computer vision and pattern recognition; 2015. pp. 3431–40. DOI
               95.  Varga R, Costea A, Florea H, Giosan I, Nedevschi S. Super­sensor for 360­degree environment perception: Point cloud segmentation
                   using image features. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems; 2017. pp. 1–8. DOI
               96.  Piewak F, Pinggera P, Schafer M, et al. Boosting lidar­based semantic labeling by cross­modal training data generation. In: Proceedings
                   of the European Conference on Computer Vision Workshops; 2018. pp. 0–0. DOI
               97.  Alonso I, Riazuelo L, Montesano L, Murillo AC. 3D­MiniNet: Learning a 2D Representation From Point Clouds for Fast and Efficient
                   3D LIDAR Semantic Segmentation. IEEE Robotics and Automation Letters 2020;5:5432–39. DOI
               98.  Alonso I, Riazuelo L, Murillo AC. MiniNet: an efficient semantic segmentation convnet for real­time robotic applications. IEEE
                   Transactions on Robotics 2020;36:1340–47. DOI
               99.  Ronneberger O, Fischer P, Brox T. U­net: Convolutional networks for biomedical image segmentation. In: International Conference on
                   Medical image computing and computer­assisted intervention. Springer; 2015. pp. 234–41. DOI
               100. Biasutti P, Lepetit V, Aujol JF, Brédif M, Bugeau A. LU­Net: an efficient network for 3D LiDAR point cloud semantic segmentation
                   based on end­to­end­learned 3D features and U­Net. 2019 IEEE/CVF International Conference on Computer Vision Workshop 2019:942–
                   50. DOI
               101. Xu J, Gong J, Zhou J, et al. SceneEncoder: scene­aware semantic segmentation of point clouds with a learnable scene descriptor. In:
                   29th International Joint Conference on Artificial Intelligence (IJCAI 2020). International Joint Conferences on Artificial Intelligence;
                   2021. pp. 601–7. DOI
               102. Wu B, Wan A, Yue X, Keutzer K. Squeezeseg: Convolutional neural nets with recurrent crf for real­time road­object segmentation from
                   3d lidar point cloud. In: 2018 IEEE International Conference on Robotics and Automation. IEEE; 2018. pp. 1887–93. DOI
               103. Wang Y, Shi T, Yun P, Tai L, Liu M. Pointseg: Real­time semantic segmentation based on 3d lidar point cloud. arXiv preprint
                   arXiv:180706288 2018. Available from: https://arxiv.org/abs/1807.06288.
               104. Iandola FN, Moskewicz MW, Ashraf K, et al. SqueezeNet: AlexNet­level accuracy with 50x fewer parameters and <1MB model size.
                   ArXiv 2017;abs/1602.07360. Available from: https://arxiv.org/abs/1602.07360.
               105. Hua B, Tran M, Yeung S. Pointwise convolutional neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
                   Recognition; 2018. pp. 984–93. DOI
               106. Engelmann F, Kontogianni T, Leibe B. Dilated point convolutions: On the receptive field size of point convolutions on 3d point clouds.
                   In: 2020 IEEE International Conference on Robotics and Automation. IEEE; 2020. pp. 9463–69. DOI
               107. Dai A, Nießner M. 3dmv: Joint 3d­multi­view prediction for 3d semantic scene segmentation. In: Proceedings of the European Confer­
                   ence on Computer Vision; 2018. pp. 452–68. DOI
               108. Wang J, Sun B, Lu Y. Mvpnet: Multi­view point regression networks for 3d object reconstruction from a single image. In: Proceedings
                   of the AAAI Conference on Artificial Intelligence. vol. 33; 2019. pp. 8949–56. DOI
               109. Zhuang Z, Li R, Jia K, et al. Perception­aware Multi­sensor Fusion for 3D LiDAR Semantic Segmentation. In: Proceedings of the
                   IEEE/CVF International Conference on Computer Vision; 2021. pp. 16280–90. DOI
               110. Su H, Jampani V, Sun D, et al. SPLATNet: Sparse Lattice Networks for Point Cloud Processing. 2018 IEEE/CVF Conference on
                   Computer Vision and Pattern Recognition 2018:2530–39. DOI
               111. Yi L, Zhao W, Wang H, Sung M, Guibas L. GSPN: Generative shape proposal network for 3D instance segmentation in point cloud.
                   2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition 2019:3942–51. DOI
               112. Yang B, Wang J, Clark R, et al. Learning object bounding boxes for 3D Instance segmentation on point clouds. Advances in Neural
                   Information Processing Systems 2019;32:6740–49. Available from: https://proceedings.neurips.cc/paper/2019/file/d0aa518d4d3bfc721
                   aa0b8ab4ef32269­Paper.pdf.
               113. Zhou D, Fang J, Song X, et al. Joint 3D instance segmentation and object detection for autonomous driving. In: 2020 IEEE/CVF
                   Conference on Computer Vision and Pattern Recognition; 2020. pp. 1836–46. DOI
               114. Wu B, Zhou X, Zhao S, Yue X, Keutzer K. SqueezeSegV2: improved model structure and unsupervised domain adaptation for road­object
                   segmentation from a lidar point cloud. 2019 International Conference on Robotics and Automation 2019:4376–82. DOI
               115. Hou J, Dai A, Nießner M. 3D­SIS: 3D semantic instance segmentation of RGB­D scans. 2019 IEEE/CVF Conference on Computer
                   Vision and Pattern Recognition 2019:4416–25. DOI
               116. Narita G, Seno T, Ishikawa T, Kaji Y. PanopticFusion: online volumetric semantic mapping at the level of stuff and things. 2019
                   IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2019:4205–12. DOI
               117. Qi CR, Liu W, Wu C, Su H, Guibas L. Frustum pointnets for 3D object detection from RGB­D data. 2018 IEEE/CVF Conference on
                   Computer Vision and Pattern Recognition 2018:918–27. DOI
               118. Elich C, Engelmann F, Kontogianni T, Leibe B. 3D Bird’s­eye­view instance segmentation. In: German Conference on Pattern Recog­
                   nition. Springer; 2019. pp. 48–61. DOI
               119. Komarichev A, Zhong Z, Hua J. A­CNN: annularly convolutional neural networks on point clouds. In: 2019 IEEE/CVF Conference on
                   Computer Vision and Pattern Recognition; 2019. pp. 7413–22. DOI
   25   26   27   28   29   30   31   32   33   34   35