Page 37 - Read Online
P. 37

Bernardo et al. Intell Robot 2021;1(2):116-30  I http://dx.doi.org/10.20517/ir.2021.10  Page 130


                  2015;33:21–28.
               29. Garg S, Sünderhauf N, Dayoub F, et al. Semantics for robotic mapping, perception and interaction: A Survey. FNT in Robotics 2020;8:
                       1-224.
               30. Manzoor S, Rocha YG, Joo SH, et al. Ontology­based knowledge representation in robotic systems: a survey
                  oriented toward applications. Applied Sciences 2021;11:4324.
               31. Tenorth M, Beetz M. KnowRob: A knowledge processing infrastructure for cognition­enabled robots. The International Journal of
                  Robotics Research 2013;32:566–90.
               32.  Beßler D, Pomarlan M, Beetz M. Owl­enabled assembly planning for robotic agents. In: Proceedings of the 17th International
                  Conference on Autonomous Agents and MultiAgent Systems; 2018. pp. 1684–92.
               33. Schlenoff C, Prestes E, Madhavan R, et al. An IEEE standard ontology for robotics and automation. In: 2012 IEEE/
                  RSJ International Conference on Intelligent Robots and Systems. IEEE; 2012. pp. 1337–42.
               34. Stenmark M, Malec J. Knowledge­Based Industrial Robotics. In: SCAI; 2013. pp. 265–74.
               35. Bruno B, Chong NY, Kamide H, et al. The CARESSES EU­Japan project: making assistive robots culturally competent.
                  In: Italian Forum of Ambient Assisted Living. Springer; 2017. pp. 151–69.
               36. Waibel M, Beetz M, Civera J, et al. Roboearth. IEEE Robot Automat Mag 2011;18:69-82.
               37. Saxena A, Jain A, Sener O, et al. Robobrain: Large­scale knowledge engine for robots. arXiv preprint arXiv:14120691 2014.
               38. Dogmus Z, Erdem E, Patoglu V. RehabRobo­Onto: Design, development and maintenance of a rehabilitation robotics ontology on
                  the cloud. Robotics and Computer-Integrated Manufacturing 2015;33:100-9.
               39. Gonçalves PJS, Torres PMB. Knowledge representation applied to robotic orthopedic surgery. Robotics and Computer-Integrated
                       Manufacturing 2015;33:90-9.
               40. Bayat B, Bermejo­Alonso J, Carbonera J, et al. Requirements for building an ontology for autonomous robots. IR 2016;43:469-80.
               41. IEEE standard ontologies for robotics and automation. IEEE Std 1872 2015 2015:1–60.
               42. Crespo J, Barber R, Mozos O. Relational model for robotic semantic navigation in indoor environments. J Intell Robot Syst 2017;86:617

                       -39.
               43. Crespo J, Barber R, Mozos O, BeBler D, Beetz M. Reasoning Systems for Semantic Navigation in Mobile Robots. In: 2018 IEEE/
                  RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. pp. 5654–59.
               44. Protégé. Protégé; Access May, 2020. Available from: https://protege.stanford.edu.
               45. Reasoner H. Hermit Reasoner; Access May, 2020. Available from: http://www.hermit­reasoner.com.
               46. Gangemi A, Borgo S, Catenacci C, Lehmann J. Task taxonomies for knowledge content. Metokis Deliverable D 2004;7:2004.
               47. Fox M, Long D. PDDL2. 1: An extension to PDDL for expressing temporal planning domains. jair 2003;20:61-124.
               48. Edelkamp S, Hoffmann J. PDDL2. 2: The language for the classical part of the 4th international planning competition. Technical
                  Report 195, University of Freiburg; 2004.
               49. Gerevini A, Long D. Plan constraints and preferences in PDDL3. Technical Report 2005­08­07, Department of Electronics for
                  Automa­ tion …; 2005.
               50. Cashmore M, Fox M, Long D, et al. Rosplan: Planning in the robot operating system. In: Proceedings of
                  the International Conference on Automated Planning and Scheduling. vol. 25; 2015.
               51. Gayathri R, Uma V. Ontology based knowledge representation technique, domain modeling languages and planners for robotic
                  path planning: A survey. ICT Express 2018;4:69–74.
               52. Gonçalves PJS, Lourenço B, Santos S, Barlogis R, Misson A. Computer vision intelligent approaches to extract human pose and its
                  activity from image sequences. Electronics 2020;9:159.
   32   33   34   35   36   37   38   39   40   41   42