Page 37 - Read Online
P. 37
Bernardo et al. Intell Robot 2021;1(2):116-30 I http://dx.doi.org/10.20517/ir.2021.10 Page 130
2015;33:21–28.
29. Garg S, Sünderhauf N, Dayoub F, et al. Semantics for robotic mapping, perception and interaction: A Survey. FNT in Robotics 2020;8:
1-224.
30. Manzoor S, Rocha YG, Joo SH, et al. Ontologybased knowledge representation in robotic systems: a survey
oriented toward applications. Applied Sciences 2021;11:4324.
31. Tenorth M, Beetz M. KnowRob: A knowledge processing infrastructure for cognitionenabled robots. The International Journal of
Robotics Research 2013;32:566–90.
32. Beßler D, Pomarlan M, Beetz M. Owlenabled assembly planning for robotic agents. In: Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems; 2018. pp. 1684–92.
33. Schlenoff C, Prestes E, Madhavan R, et al. An IEEE standard ontology for robotics and automation. In: 2012 IEEE/
RSJ International Conference on Intelligent Robots and Systems. IEEE; 2012. pp. 1337–42.
34. Stenmark M, Malec J. KnowledgeBased Industrial Robotics. In: SCAI; 2013. pp. 265–74.
35. Bruno B, Chong NY, Kamide H, et al. The CARESSES EUJapan project: making assistive robots culturally competent.
In: Italian Forum of Ambient Assisted Living. Springer; 2017. pp. 151–69.
36. Waibel M, Beetz M, Civera J, et al. Roboearth. IEEE Robot Automat Mag 2011;18:69-82.
37. Saxena A, Jain A, Sener O, et al. Robobrain: Largescale knowledge engine for robots. arXiv preprint arXiv:14120691 2014.
38. Dogmus Z, Erdem E, Patoglu V. RehabRoboOnto: Design, development and maintenance of a rehabilitation robotics ontology on
the cloud. Robotics and Computer-Integrated Manufacturing 2015;33:100-9.
39. Gonçalves PJS, Torres PMB. Knowledge representation applied to robotic orthopedic surgery. Robotics and Computer-Integrated
Manufacturing 2015;33:90-9.
40. Bayat B, BermejoAlonso J, Carbonera J, et al. Requirements for building an ontology for autonomous robots. IR 2016;43:469-80.
41. IEEE standard ontologies for robotics and automation. IEEE Std 1872 2015 2015:1–60.
42. Crespo J, Barber R, Mozos O. Relational model for robotic semantic navigation in indoor environments. J Intell Robot Syst 2017;86:617
-39.
43. Crespo J, Barber R, Mozos O, BeBler D, Beetz M. Reasoning Systems for Semantic Navigation in Mobile Robots. In: 2018 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE; 2018. pp. 5654–59.
44. Protégé. Protégé; Access May, 2020. Available from: https://protege.stanford.edu.
45. Reasoner H. Hermit Reasoner; Access May, 2020. Available from: http://www.hermitreasoner.com.
46. Gangemi A, Borgo S, Catenacci C, Lehmann J. Task taxonomies for knowledge content. Metokis Deliverable D 2004;7:2004.
47. Fox M, Long D. PDDL2. 1: An extension to PDDL for expressing temporal planning domains. jair 2003;20:61-124.
48. Edelkamp S, Hoffmann J. PDDL2. 2: The language for the classical part of the 4th international planning competition. Technical
Report 195, University of Freiburg; 2004.
49. Gerevini A, Long D. Plan constraints and preferences in PDDL3. Technical Report 20050807, Department of Electronics for
Automa tion …; 2005.
50. Cashmore M, Fox M, Long D, et al. Rosplan: Planning in the robot operating system. In: Proceedings of
the International Conference on Automated Planning and Scheduling. vol. 25; 2015.
51. Gayathri R, Uma V. Ontology based knowledge representation technique, domain modeling languages and planners for robotic
path planning: A survey. ICT Express 2018;4:69–74.
52. Gonçalves PJS, Lourenço B, Santos S, Barlogis R, Misson A. Computer vision intelligent approaches to extract human pose and its
activity from image sequences. Electronics 2020;9:159.