Page 62 - Read Online
P. 62

Page 57                             Qi et al. Intell Robot 2021;1(1):18-57  I http://dx.doi.org/10.20517/ir.2021.02



               104. Liang X, Liu Y, Chen T, Liu M, Yang Q. Federated transfer reinforcement learning for autonomous driving. arXiv:191006001 [cs]
                   2019 Oct. ArXiv: 1910.06001. Available from: http://arxiv.org/abs/1910.06001.
               105. Lim HK, Kim JB, Heo JS, Han YH. Federated reinforcement learning for training control policies on multiple IoT devices. Sensors
                   2020 Mar;20:1359. Available from: https://www.mdpi.com/1424­8220/20/5/1359.
               106. Lim HK, Kim JB, Ullah I, Heo JS, Han YH. Federated reinforcement learning acceleration method for precise control of multiple
                   devices. IEEE Access 2021;9:76296–306.
               107. Mowla NI, Tran NH, Doh I, Chae K. AFRL: adaptive federated reinforcement learning for intelligent jamming defense in FANET.
                   Journal of Communications and Networks 2020;22:244–58.
               108. Nguyen TG, Phan TV, Hoang DT, Nguyen TN, So­In C. Federated deep reinforcement learning for traffic monitoring in SDN­Based
                   IoT networks. IEEE T Cogn Commun 2021:1–1.
               109.  Wang X, Garg S, Lin H, et al. Towards accurate anomaly detection in industrial internet­of­things using hierarchical federated
                   learning. IEEE Internet Things 2021:1–1.
               110. Lee S, Choi DH. Federated reinforcement learning for energy management of multiple smart homes with distributed energy re­
                   sources. IEEE T Ind Inform 2020:1–1.
               111. Samet H. The quadtree and related hierarchical data structures. ACM Comput Surv 1984;16:187–260. Available from: https: //
                   doi.org/10.1145/356924.356930.
               112. Abdel­Aziz MK, Samarakoon S, Perfecto C, Bennis M. Cooperative perception in vehicular networks using multi­agent re­
                   inforcement learning.  In: 2020 54th Asilomar Conference on Signals, Systems, and Computers; 2020. pp. 408–12.
               113. Wang H, Kaplan Z, Niu D, Li B. Optimizing federated learning on non­IID data with reinforcement learning. In: IEEE INFOCOM
                   2020 ­ IEEE Conference on Computer Communications. Toronto, ON, Canada: IEEE; 2020. pp. 1698–707. Available from: https:
                   //ieeexplore.ieee.org/document/9155494/.
               114. Zhang P, Gan P, Aujla GS, Batth RS. Reinforcement learning for edge device selection using social attribute perception in industry
                   4.0. IEEE Internet Things 2021:1–1.
               115. Zhan Y, Li P, Leijie W, Guo S. L4L: Experience­driven computational resource control in federated learning. IEEE T Comput
                   2021:1–1.
               116. Dong Y, Gan P, Aujla GS, Zhang P. RA­RL: reputation­aware edge device selection method based on reinforcement learning. In:
                   2021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM); 2021. pp. 348–53.
               117. Sahu AK, Li T, Sanjabi M, et al. On the convergence of federated optimization in heterogeneous networks. CoRR 2018;abs/
                   1812.06127. Available from: http://arxiv.org/abs/1812.06127.
               118.  Chen M, Poor HV, Saad W, Cui S. Convergence time optimization for federated learning over wireless networks. IEEE
                   T Wirel Commun 2021;20:2457–71.
               119. Li X, Huang K, Yang W, Wang S, Zhang Z. On the convergence of FedAvg on non­IID data; 2020. Available from: https://arxiv.org/
                   abs/1907.02189?context=stat.ML.
               120. Bonawitz KA, Eichner H, Grieskamp W, et al. Towards federated learning at scale: system design. CoRR 2019;abs/1902.01046.
                   Available from: http://arxiv.org/abs/1902.01046.
               121. Mnih V, Kavukcuoglu K, Silver D, et al. Human­level control through deep reinforcement learning. Nature 2015;518:529–33.
                   Available from: https://doi.org/10.1038/nature14236.
               122. Lillicrap TP, Hunt JJ, Pritzel A, et al. Continuous control with deep reinforcement learning; 2019. Available from: https://arxiv.org/
                   abs/1509.02971.
               123. Lyu L, Yu H, Yang Q. Threats to federated learning: a survey. CoRR 2020;abs/2003.02133. Available from: https://arxiv.org/abs/20
                   03.02133.
               124. Fung C, Yoon CJM, Beschastnikh I. Mitigating sybils in federated learning poisoning. CoRR 2018;abs/1808.04866. Available from:
                   http://arxiv.org/abs/1808.04866.
               125. Anwar A, Raychowdhury A. Multi­task federated reinforcement learning with adversaries; 2021.
               126. Zhu L, Liu Z, Han S. Deep leakage from gradients. CoRR 2019;abs/1906.08935. Available from: http://arxiv.org/abs/1906.08935.
               127. Nishio T, Yonetani R. Client selection for federated learning with heterogeneous resources in mobile edge. In: ICC 2019 ­ 2019
                   IEEE International Conference on Communications (ICC); 2019. pp. 1–7.
               128. Yang T, Andrew G, Eichner H, et al. Applied federated learning: improving Google Keyboard query suggestions. CoRR 2018;abs/
                    1812.02903. Available from: http://arxiv.org/abs/1812.02903.
               129. Yu H, Liu Z, Liu Y, et al. A fairness­aware incentive scheme for federated learning. In: Proceedings of the AAAI/ACM
                   Conference on AI, Ethics, and Society. AIES ’20. New York, NY, USA: Association for Computing Machinery; 2020. p. 393–399.
                   Available from: https://doi.org/10.1145/3375627.3375840.
   57   58   59   60   61   62   63   64   65   66   67