Page 60 - Read Online
P. 60
Page 55 Qi et al. Intell Robot 2021;1(1):18-57 I http://dx.doi.org/10.20517/ir.2021.02
from: http://arxiv.org/abs/1512.04455.
52. Foerster J, Nardelli N, Farquhar G, et al. Stabilising experience replay for deep multiagent reinforcement learning. In: Precup
D, Teh YW, editors. Proceedings of the 34th International Conference on Machine Learning. vol. 70 of Proceedings of Machine Learning
Research. PMLR; 2017. pp. 1146–55. Available from: https://proceedings.mlr.press/v70/foerster17b.html.
53. Van der Pol E, Oliehoek FA. Coordinated deep reinforcement learners for traffic light control. Proceedings of Learning, Inference and
Control of MultiAgent Systems (at NIPS 2016) 2016. Available from: https://www.elisevanderpol.nl/papers/vanderpolNIPSMALIC2
016.pdf.
54. Foerster J, Farquhar G, Afouras T, Nardelli N, Whiteson S. Counterfactual multiagent policy gradients. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 32; 2018. Available from: https://ojs.aaai.org/index.php/AAAI/article/view/11794.
55. Lowe R, Wu Y, Tamar A, et al. Multiagent actorcritic for mixed cooperativecompetitive environments. CoRR 2017;abs/
1706.02275. Available from: http://arxiv.org/abs/1706.02275.
56. Nadiger C, Kumar A, Abdelhak S. Federated reinforcement learning for fast personalization. In: 2019 IEEE Second International
Conference on Artificial Intelligence and Knowledge Engineering (AIKE); 2019. pp. 123–27.
57. Liu B, Wang L, Liu M, Xu C. Lifelong federated reinforcement learning: a learning architecture for navigation in cloud robotic
systems. CoRR 2019;abs/1901.06455. Available from: http://arxiv.org/abs/1901.06455.
58. Ren J, Wang H, Hou T, Zheng S, Tang C. Federated learningbased computation offloading optimization in edge computingsupported
internet of things. IEEE Access 2019;7:69194–201.
59. Wang X, Wang C, Li X, Leung VCM, Taleb T. Federated deep reinforcement learning for internet of things with decentralized
cooperative edge caching. IEEE Internet Things 2020;7:9441–55.
60. Chen J, Monga R, Bengio S, Józefowicz R. Revisiting Distributed Synchronous SGD. CoRR 2016;abs/1604.00981. Available from:
http://arxiv.org/abs/1604.00981.
61. Mnih V, Badia AP, Mirza M, et al. Asynchronous methods for deep reinforcement learning. In: Balcan MF, Weinberger KQ,
editors. Proceedings of The 33rd International Conference on Machine Learning. vol. 48 of Proceedings of Machine Learning
Research. New York, New York, USA: PMLR; 2016. pp. 1928–37. Available from: https://proceedings.mlr.press/v48/mniha1 6.html.
62. Espeholt L, Soyer H, Munos R, et al. IMPALA: scalable distributed deepRL with importance weighted actor learner
architectures. In: Dy J, Krause A, editors. Proceedings of the 35th International Conference on Machine Learning. vol. 80 of
Proceedings of Machine Learning Research. PMLR; 2018. pp. 1407–16. Available from: http://proceedings.mlr.press/v80/espeholt18a.
html.
63. Horgan D, Quan J, Budden D, et al. Distributed prioritized experience replay. CoRR 2018;abs/1803.00933. Available from: http://
arxiv.org/abs/1803.00933.
64. Liu T, Tian B, Ai Y, et al. Parallel reinforcement learning: a framework and case study. IEEE/CAA Journal of Automatica Sinica
2018;5:827–35.
65. Zhuo HH, Feng W, Xu Q, Yang Q, Lin Y. Federated reinforcement learning. CoRR 2019;abs/1901.08277. Available from: http: /
/arxiv.org/abs/1901.08277.
66. Canese L, Cardarilli GC, Di Nunzio L, et al. Multiagent reinforcement learning: a review of challenges and applications.
Applied Sciences 2021;11:4948. Available from: https://doi.org/10.3390/app11114948.
67. Busoniu L, Babuska R, De Schutter B. A comprehensive survey of Multiagent Reinforcement Learning. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 2008;38:156–72.
68. Zhang K, Yang Z, Başar T. Multiagent reinforcement learning: a selective overview of theories and algorithms. Handbook of Rein
forcement Learning and Control 2021:321–84.
69. Stone P, Veloso M. Multiagent systems: A survey from a machine learning perspective. Auton Robot 2000;8:345–83.
70. Szepesvári C, Littman ML. A unified analysis of valuefunctionbased reinforcementlearning algorithms. Neural Comput
1999;11:2017–60.
71. Littman ML. Valuefunction reinforcement learning in Markov games. Cogn Syst Res 2001;2:55–66.
72. Tan M. Multiagent reinforcement learning: Independent vs. cooperative agents. In: Proceedings of the tenth international conference
on machine learning; 1993. pp. 330–37.
73. Lauer M, Riedmiller M. An algorithm for distributed reinforcement learning in cooperative multiagent systems. In: In Proceedings of
the Seventeenth International Conference on Machine Learning. Citeseer; 2000. Available from: http://citeseerx.ist.psu.edu/viewdoc/su
mmary.
74. Monahan GE. State of the art—a survey of partially observable Markov decision processes: theory, models, and algorithms. Manage Sci
1982;28:1–16.
75. Oroojlooyjadid A, Hajinezhad D. A review of cooperative multiagent deep reinforcement learning. CoRR 2019;abs/1908.03963.
Available from: http://arxiv.org/abs/1908.03963.
76. Bernstein DS, Givan R, Immerman N, Zilberstein S. The complexity of decentralized control of Markov decision processes. Math Oper
Res 2002;27:819–40.
77. Omidshafiei S, Pazis J, Amato C, How JP, Vian J. Deep decentralized multitask multiagent reinforcement learning under partial
observability. In: Precup D, Teh YW, editors. Proceedings of the 34th International Conference on Machine Learning. vol. 70 of