Page 61 - Read Online
P. 61
Qi et al. Intell Robot 2021;1(1):18-57 I http://dx.doi.org/10.20517/ir.2021.02 Page 56
Proceedings of Machine Learning Research. PMLR; 2017. pp. 2681–90. Available from: https://proceedings.mlr.press/v70/omidshafie
i17a.html.
78. Han Y, Gmytrasiewicz P. Ipomdpnet: a deep neural network for partially observable multiagent planning using interactive pomdps.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33; 2019. pp. 6062–69.
79. Karkus P, Hsu D, Lee WS. QMDPNet: deep learning for planning under partial observability; 2017. Available from: https://arxiv.or
g/abs/1703.06692.
80. Mao W, Zhang K, Miehling E, Başar T. Information state embedding in partially observable cooperative multiagent
reinforcement learning. In: 2020 59th IEEE Conference on Decision and Control (CDC); 2020. pp. 6124–31.
81. Mao H, Zhang Z, Xiao Z, Gong Z. Modelling the dynamic joint policy of teammates with attention multiagent DDPG. CoRR
2018;abs/1811.07029. Available from: http://arxiv.org/abs/1811.07029.
82. Lee HR, Lee T. Multiagent reinforcement learning algorithm to solve a partiallyobservable multiagent problem in disaster response.
Eur J Oper Res 2021;291:296–308.
83. Sukhbaatar S, szlam a, Fergus R. Learning multiagent communication with backpropagation. In: Lee D, Sugiyama M, Luxburg U,
Guyon I, Garnett R, editors. Advances in Neural Information Processing Systems. vol. 29. Curran Associates, Inc.; 2016. Available from:
https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60Paper.pdf.
84. Foerster JN, Assael YM, de Freitas N, Whiteson S. Learning to communicate with deep multiagent reinforcement learning. CoRR
2016;abs/1605.06676. Available from: http://arxiv.org/abs/1605.06676.
85. Buşoniu L, Babuška R, De Schutter B. Multiagent reinforcement learning: an overview. Innovations in multiagent systems and
applications1 2010:183–221.
86. Hu Y, Hua Y, Liu W, Zhu J. Reward shaping based federated reinforcement learning. IEEE Access 2021;9:67259–67.
87. Anwar A, Raychowdhury A. Multitask federated reinforcement learning with adversaries. CoRR 2021;abs/2103.06473. Available
from: https://arxiv.org/abs/2103.06473.
88. Wang X, Han Y, Wang C, et al. Inedge AI: intelligentizing mobile edge computing, caching and communication by federated
learning. IEEE Network 2019;33:156–65.
89. Wang X, Li R, Wang C, et al. Attentionweighted federated deep reinforcement learning for devicetodevice assisted
heterogeneous collaborative edge caching. IEEE J Sel Area Comm 2021;39:154–69.
90. Zhang M, Jiang Y, Zheng FC, Bennis M, You X. Cooperative edge caching via federated deep reinforcement learning in fogRANs. In:
2021 IEEE International Conference on Communications Workshops (ICC Workshops); 2021. pp. 1–6.
91. Majidi F, Khayyambashi MR, Barekatain B. HFDRL: an intelligent dynamic cooperate cashing method based on hierarchical feder
ated deep reinforcement learning in edgeenabled IoT. IEEE Internet Things 2021:1-1.
92. Zhao L, Ran Y, Wang H, Wang J, Luo J. Towards cooperative caching for vehicular networks with multilevel federated reinforcement
learning. In: ICC 2021 IEEE International Conference on Communications; 2021. pp. 1–6.
93. Zhu Z, Wan S, Fan P, Letaief KB. Federated multiagent actorcritic learning for age sensitive mobile edge computing. IEEE
Internet Things 2021:1-1.
94. Yu S, Chen X, Zhou Z, Gong X, Wu D. When deep reinforcement learning meets federated learning: intelligent multitimescale re
source management for multiaccess edge computing in 5G ultra dense network. arXiv:200910601 [cs] 2020 Sep. ArXiv: 2009.10601.
Available from: http://arxiv.org/abs/2009.10601.
95. Tianqing Z, Zhou W, Ye D, Cheng Z, Li J. Resource allocation in IoT edge computing via concurrent federated reinforcement
learning. IEEE Internet Things 2021:1–1.
96. Huang H, Zeng C, Zhao Y, et al. Scalable orchestration of service function chains in NFVEnabled networks: a federated
reinforcement learning approach. IEEE J Sel Area Comm 2021;39:2558–71.
97. Liu YJ, Feng G, Sun Y, Qin S, Liang YC. Device association for RAN slicing based on hybrid federated deep reinforcement learning.
IEEE T Veh Technol 2020;69:15731–45.
98. Wang G, Dang CX, Zhou Z. Measure contribution of participants in federated learning. In: 2019 IEEE International Conference on
Big Data (Big Data); 2019. pp. 2597–604.
99. Cao Y, Lien SY, Liang YC, Chen KC. Federated deep reinforcement learning for user access control in open radio access networks. In:
ICC 2021 IEEE International Conference on Communications; 2021. pp. 1–6.
100. Zhang L, Yin H, Zhou Z, Roy S, Sun Y. Enhancing WiFi multiple access performance with federated deep reinforcement learning. In:
2020 IEEE 92nd Vehicular Technology Conference (VTC2020Fall); 2020. pp. 1–6.
101. Xu M, Peng J, Gupta BB, et al. Multiagent federated reinforcement learning for secure incentive mechanism in intelligent cyber
physical systems. IEEE Internet Things 2021:1–1.
102. Zhang X, Peng M, Yan S, Sun Y. Deepreinforcementlearningbased mode selection and resource allocation for cellular V2X
communications. IEEE Internet Things 2020;7:6380–91.
103. Kwon D, Jeon J, Park S, Kim J, Cho S. Multiagent DDPGbased deep learning for smart ocean federated learning IoT networks.
IEEE Internet Things 2020;7:9895–903.