Page 61 - Read Online
P. 61

Qi et al. Intell Robot 2021;1(1):18-57  I http://dx.doi.org/10.20517/ir.2021.02       Page 56



                   Proceedings of Machine Learning Research. PMLR; 2017. pp. 2681–90. Available from: https://proceedings.mlr.press/v70/omidshafie
                   i17a.html.
               78.  Han Y, Gmytrasiewicz P. Ipomdp­net: a deep neural network for partially observable multi­agent planning using interactive pomdps.
                   In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33; 2019. pp. 6062–69.
               79.  Karkus P, Hsu D, Lee WS. QMDP­Net: deep learning for planning under partial observability; 2017. Available from: https://arxiv.or
                   g/abs/1703.06692.
               80.  Mao W, Zhang K, Miehling E, Başar T.  Information state embedding in partially observable cooperative multi­agent
                   reinforcement learning.  In:  2020 59th IEEE Conference on Decision and Control (CDC); 2020. pp. 6124–31.
               81.  Mao H, Zhang Z, Xiao Z, Gong Z. Modelling the dynamic joint policy of teammates with attention multi­agent DDPG. CoRR
                   2018;abs/1811.07029. Available from: http://arxiv.org/abs/1811.07029.
               82.  Lee HR, Lee T. Multi­agent reinforcement learning algorithm to solve a partially­observable multi­agent problem in disaster response.
                   Eur J Oper Res 2021;291:296–308.
               83.  Sukhbaatar S, szlam a, Fergus R. Learning multiagent communication with backpropagation. In: Lee D, Sugiyama M, Luxburg U,
                   Guyon I, Garnett R, editors. Advances in Neural Information Processing Systems. vol. 29. Curran Associates, Inc.; 2016. Available from:
                   https://proceedings.neurips.cc/paper/2016/file/55b1927fdafef39c48e5b73b5d61ea60­Paper.pdf.
               84.  Foerster JN, Assael YM, de Freitas N, Whiteson S. Learning to communicate with deep multi­agent reinforcement learning. CoRR
                   2016;abs/1605.06676. Available from: http://arxiv.org/abs/1605.06676.

               85.  Buşoniu L, Babuška R, De Schutter B. Multi­agent reinforcement learning: an overview. Innovations in multiagent systems and
                   applications1   2010:183–221.
               86.  Hu Y, Hua Y, Liu W, Zhu J. Reward shaping based federated reinforcement learning. IEEE Access 2021;9:67259–67.
               87.  Anwar A, Raychowdhury A. Multi­task federated reinforcement learning with adversaries. CoRR 2021;abs/2103.06473. Available
                   from: https://arxiv.org/abs/2103.06473.
               88.  Wang X, Han Y, Wang C, et al. In­edge AI: intelligentizing mobile edge computing, caching and communication by federated
                   learning. IEEE Network 2019;33:156–65.
               89.  Wang X, Li R, Wang C, et al.  Attention­weighted federated deep reinforcement learning for device­to­device assisted
                   heterogeneous collaborative edge caching. IEEE J Sel Area Comm 2021;39:154–69.
               90.  Zhang M, Jiang Y, Zheng FC, Bennis M, You X. Cooperative edge caching via federated deep reinforcement learning in fog­RANs. In:
                   2021 IEEE International Conference on Communications Workshops (ICC Workshops); 2021. pp. 1–6.
               91.  Majidi F, Khayyambashi MR, Barekatain B. HFDRL: an intelligent dynamic cooperate cashing method based on hierarchical feder­
                   ated deep reinforcement learning in edge­enabled IoT. IEEE Internet Things 2021:1-1.
               92.  Zhao L, Ran Y, Wang H, Wang J, Luo J. Towards cooperative caching for vehicular networks with multi­level federated reinforcement
                    learning. In: ICC 2021 ­ IEEE International Conference on Communications; 2021. pp. 1–6.
               93.  Zhu Z, Wan S, Fan P, Letaief KB. Federated multi­agent actor­critic learning for age sensitive mobile edge computing. IEEE
                   Internet Things 2021:1-1.
               94.  Yu S, Chen X, Zhou Z, Gong X, Wu D. When deep reinforcement learning meets federated learning: intelligent multi­timescale re­
                   source management for multi­access edge computing in 5G ultra dense network. arXiv:200910601 [cs] 2020 Sep. ArXiv: 2009.10601.
                   Available from: http://arxiv.org/abs/2009.10601.
               95.  Tianqing Z, Zhou W, Ye D, Cheng Z, Li J. Resource allocation in IoT edge computing via concurrent federated reinforcement
                   learning. IEEE Internet Things 2021:1–1.
               96.  Huang H, Zeng C, Zhao Y, et al.  Scalable orchestration of service function chains in NFV­Enabled networks: a federated
                   reinforcement learning approach. IEEE J Sel Area Comm 2021;39:2558–71.
               97.  Liu YJ, Feng G, Sun Y, Qin S, Liang YC. Device association for RAN slicing based on hybrid federated deep reinforcement learning.
                   IEEE T Veh Technol 2020;69:15731–45.
               98.  Wang G, Dang CX, Zhou Z. Measure contribution of participants in federated learning. In: 2019 IEEE International Conference on
                   Big Data (Big Data); 2019. pp. 2597–604.
               99.  Cao Y, Lien SY, Liang YC, Chen KC. Federated deep reinforcement learning for user access control in open radio access networks. In:
                   ICC 2021 ­ IEEE International Conference on Communications; 2021. pp. 1–6.
               100. Zhang L, Yin H, Zhou Z, Roy S, Sun Y. Enhancing WiFi multiple access performance with federated deep reinforcement learning. In:
                   2020 IEEE 92nd Vehicular Technology Conference (VTC2020­Fall); 2020. pp. 1–6.
               101. Xu M, Peng J, Gupta BB, et al. Multi­agent federated reinforcement learning for secure incentive mechanism in intelligent cyber­
                   physical systems. IEEE Internet Things 2021:1–1.
               102. Zhang X, Peng M, Yan S, Sun Y. Deep­reinforcement­learning­based mode selection and resource allocation for cellular V2X
                   communications. IEEE Internet Things 2020;7:6380–91.
               103. Kwon D, Jeon J, Park S, Kim J, Cho S. Multiagent DDPG­based deep learning for smart ocean federated learning IoT networks.
                   IEEE Internet Things 2020;7:9895–903.
   56   57   58   59   60   61   62   63   64   65   66