Page 102 - Read Online
P. 102
Page 97 Li et al. Intell Robot 2021;1(1):84-98 I http://dx.doi.org/10.20517/ir.2021.06
dataset and can decrease the domain gap between different datasets. In future work, how to further optimize
the whole system will be considered.
DECLARATIONS
Authors’ contributions
Made substantial contributions to conception and design of the study and performed data analysis, data ac-
quisition and interpretation: Li B
Provided administrative, technical guidance and material support: Zhang H, Wang Z, Hu L
Availability of data and materials
Not applicable.
Financial support and sponsorship
This work is supported by the National Key R&D Program of China (2018YFB1305003), National Natural
Science Foundation of China(61922063), and Shanghai Shuguang Project (18SG18).
Conflicts of interest
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2021.
REFERENCES
1. Zhang K, Chen J, Li Y, Zhang X. Visual tracking and depth estimation of mobile robots without desired velocity information. IEEE
Trans Cybern 2018;50:361–73.
2. Xiao J, Stolkin R, Gao Y, Leonardis A. Robust fusion of color and depth data for RGBD target tracking using adaptive rangeinvariant
depth models and spatiotemporal consistency constraints. IEEE Trans Cybern 2017;48:2485–99.
3. Gedik OS, Alatan AA. 3D rigid body tracking using vision and depth sensors. IEEE Trans Cybern 2013;43:1395–405.
4. van der Sommen F, Zinger S,With P. Accurate biopsyneedle depth estimation in limitedangle tomography using multiview geometry. In:
Medical Imaging 2016: ImageGuided Procedures, Robotic Interventions, and Modeling. vol. 9786. International Society for Optics and
Photonics; 2016. p. 97860D.
5. Eigen D, Puhrsch C, Fergus R. Depth map prediction from a single image using a multiscale deep network. arXiv preprint arXiv:14062283
2014.
6. Chang Y, Jung C, Sun J. Joint reflection removal and depth estimation from a single image. IEEE Trans Cybern 2020.
7. Liu F, Shen C, Lin G. Deep convolutional neural fields for depth estimation from a single image. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition; 2015. pp. 5162–70.
8. Laina I, Rupprecht C, Belagiannis V, Tombari F, Navab N. Deeper depth prediction with fully convolutional residual networks. In: 2016
Fourth International Conference on 3D Vision (3DV). IEEE; 2016. pp. 239–48.
9. Chen W, Fu Z, Yang D, Deng J. Singleimage depth perception in the wild. Advances in Neural Information Processing Systems
2016;29:730–38.
10. Kuznietsov Y, Stuckler J, Leibe B. Semisupervised deep learning for monocular depth map prediction. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition; 2017. pp. 6647–55.
11. Garg R, Bg VK, Carneiro G, Reid I. Unsupervised cnn for single view depth estimation: Geometry to the rescue. In: European
Conference on Computer Vsion. Springer; 2016. pp. 740–56.