Page 78 - Read Online
P. 78
Page 421 Yang et al. Intell Robot 2024;4(4):406-21 I http://dx.doi.org/10.20517/ir.2024.24
5. Zhao T, Li Z, Zou B, He Z, Ren S. Wide-area time synchronization method for mutual preparation of satellite clock and network clock.
Automat Electr Power Syst 2017;41:202–7. DOI
6. Xu J, Wu Z, Hu Q, et al. Interval state estimation for active distribution networks considering uncertainties of multiple types of DGs and
loads. Proc CSEE 2018;38:3255–66. DOI
7. Tian S, Li K, Wei S, Fu Y, Li Z, Liu S. Security situation awareness approach for distribution network based on synchronous phasor
measurement unit. Proc CSEE 2021;41:617–31. DOI
8. Qian B, Cai Z, Xiao Y, et al. Review on time synchronization attack in power system. Power Syst Technol 2020;44:4035–45. DOI
9. Zhao X, Liu G, Li L. Importance-driven denial-of-service attack strategy design against remote state estimation in multi-agent intelligent
power systems. Intell Robot 2024;4:244–55. DOI
10. Bi T, Guo J, Xu K, Zhang L, Yang Q. The impact of time synchronization deviation on the performance of synchrophasor measurements
and wide area damping control. IEEE Trans Smart Grid 2017;8:1545–52. DOI
11. Shang Y. Resilient vector consensus over random dynamic networks under mobile malicious attacks. Comput J 2023:67:1076–86. DOI
12. Shang Y. Resilient consensus in continuous-time networks with ℓ-hop communication and time delay. Syst Control Lett 2023:175:105509.
DOI
13. Zeng H, Ye Z, Zhang D, Lu Q. Robust distributed model predictive control of connected vehicle platoon against DoS attacks. Intell Robot
2023;3:288-305. DOI
14. Xue A, Xu F, Martin KE, Xu J, You H, Bi T. Linear approximations for the influence of phasor angle difference errors on line parameter
calculation. IEEE Trans Power Syst 2019;34:3455–64. DOI
15. Saraswat D, Bhattacharya P, Zuhair M, Verma A, Kumar A. AnSMart: a SVM-based anomaly detection scheme via system profiling in
smart grids. In: 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM); 2021 Apr 28-30; London, UK.
IEEE; 2021. pp. 417–22. DOI
16. Niu X, Li J, Sun J, Tomsovic K. Dynamic detection of false data injection attack in smart grid using deep learning. In: 2019 IEEE Power
& Energy Society Innovative Smart Grid Technologies Conference (ISGT); 2019 Feb 18-21; Washington, USA. IEEE; 2019. pp. 1–6. DOI
17. Jeyaselvi M, Sathya M, Suchitra S, Ibrahim SJA, Chakravarthy NSK. SVM-based cloning and jamming attack detection in IoT sensor net-
works. In: Goar V, Kuri M, Kumar R, Senjyu T, editors. Advances in information communication technology and computing: proceedings
of AICTC 2021. Springer; 2022. pp. 461–71. DOI
18. Zou Z. Research on detection and defense in smart grid GPS spoofing attack. 2022. DOI
19. Zhang Y, Wang J, Chen B. Detecting false data injection attacks in smart grids: a semi-supervised deep learning approach. IEEE Trans
Smart Grid 2020;12:623–34. DOI
20. Tan Q. GAN-based adversarial attack and defense on time series classification. 2023. DOI
21. Hoang TM, Nguyen NM, Duong TQ. Detection of eavesdropping attack in UAV-aided wireless systems: Unsupervised learning with
one-class SVM and k-means clustering. IEEE Wireless Commun Lett 2019;9:139–42. DOI
22. Ma Z, Ma H, Gao X, et al. An improved DDoS attack detection model based on unsupervised learning in smart grid. In: Xiong J, Wu S,
Peng C, Tian Y, editors. International Conference on Mobile Multimedia Communications. Springer; 2021. pp. 550–62. DOI
23. Zheng C, Wang H, Liu R. A review of research on DDoS attack detection in SDNs. Comput Eng Appl 2024;1–20. Available from:
https://link.cnki.net/urlid/11.2127.TP.20240814.1351.006. [Last accessed on 25 Nov 2024]
24. Huang R, Li Y. False phasor data detection under time synchronization attacks: a neural network approach. IEEE Trans Smart Grid
2022;13:4828–36. DOI
25. Akkaya I, Lee EA, Derler P. Model-based evaluation of GPS spoofing attacks on power grid sensors. In: 2013 Workshop on Modeling
and Simulation of Cyber-Physical Energy Systems (MSCPES); 2013 May 20; Berkeley, USA. IEEE; 2013. p. 1–6. DOI
26. Zhang Z, Gong S, Dimitrovski AD, Li H. Time synchronization attack in smart grid: impact and analysis. IEEE Trans Smart Grid
2013;4:87–98. DOI
27. Jiang X, Zhang J, Harding BJ, Makela JJ, Domínguez-García AD. Spoofing GPS receiver clock offset of phasor measurement units. IEEE
Trans Power Syst 2013;28:3253–62. DOI
28. Shepard DP, Humphreys TE, Fansler AA. Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks. Int J Crit
Infrastruct Prot 2012;5:146–53. DOI
29. Shereen E, Delcourt M, Barreto S, Dán G, Le Boudec JY, Paolone M. Feasibility of time-synchronization attacks against PMU-based state
estimation. IEEE Trans Instrum Meas 2020:69:3412–27. DOI
30. Hinton GE, Krizhevsky A, Wang SD. Transforming auto-encoders. In: Artificial Neural Networks and Machine Learning - ICANN 2011:
21st International Conference on Artificial Neural Networks. Springer; 2011. pp. 44–51. DOI
31. Sabour S, Frosst N, Hinton GE. Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. 2017. pp. 3859-69. DOI