Page 167 - Read Online
P. 167
Ao et al. Intell Robot 2023;3(4):495-513 I http://dx.doi.org/10.20517/ir.2023.28 Page 17 of 19
an informed consent form. The Ninapro acquisition experiment was conducted according to the principles
expressed in the Declaration of Helsinki (www.wma.net/en/20activities/10ethics/10helsinki) and received ap-
proval from the Ethics Commission of the Canton Valais (Switzerland), ensuring the safety of the involved
hardware and adherence to the WMA (World Medical Association).
Consent for publication
Not applicable.
Copyright
© The Author(s) 2023.
REFERENCES
1. Hu DL, Giorgio-Serchi F, Zhang SM, Yang YJ. Stretchable e-skin and transformer enable high-resolution morphological reconstruction
for soft robots. Nat Mach Intell 2023;5:261-72. DOI
2. Park YL, Chen BR, Pérez-Arancibia NO, et al. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabili-
tation. Bioinspir Biomim 2014;9:016007. DOI
3. Ding QC, Xiong AB, Zhao XG, Han JD. A review on researches and applications of sEMG-based motion intent recognition methods.
Acta Automatica Sinica 2016;42:13-25. DOI
4. He JY, Jiang N. Biometric from surface electromyogram (sEMG): feasibility of user verification and identification based on gesture
recognition. Front Bioeng Biotechnol 2020;8:58. DOI
5. Bourke AK, Brien JV, Lyons GM. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture
2007;26:194-9. DOI
6. Bretzner L, Laptev I, Lindeberg T. Hand gesture recognition using multi-scale colour features hierarchical models and particle filtering.
Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition 2002;423-8. DOI
7. Geng WD, Jin WG, et al. Gesture recognition by instantaneous surface EMG images. Sci Rep 2016;6:36571. DOI
8. Gijsberts A, Atzori M, Castellini C, Muller H, Caputo B. The movement error rate for evaluation of machine learning methods for
sEMG-based hand movement classifification. IEEE Trans Neural Syst Rehabil Eng 2014;22:735-44. DOI
9. Tang L, Li F, Cao S, Zhang X, Wu D, Chen X. Muscle synergy analysis in children with cerebral palsy. J Neural Eng 2015;12: 046017.
DOI
10. Hargrove LJ, Li G, Englehart KB, Hudgins BS. Principal components analysis preprocessing for improved classification accuracies in
pattern-recognition-based myoelectric control. IEEE Trans Biomed Eng 2009;56:1407-14. DOI
11. Morris CM, O’Brien KK, Gibson AM, Hardy JA, Singleton AB. Polymorphism in the human DJ-1 gene is not associated with sporadic
dementia with Lewy bodies or Parkinson’s disease. Neurosci Lett 2003;352:151-3. DOI
12. Zhang H, Xie Y, Zheng L, Zhang D, Zhang Q. Interpreting multivariate shapley interactions in dnns. AAAI 2021;35:10877-86. DOI
13. Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. The 13th European Conference on Computer Vision (ECCV)
2014;818-33. DOI
14. Ribeiro MT, Singh S, Guestrin C. “why should i trust you?” explaining the predictions of any classifier. Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations 2016;97–101. DOI
15. Selvaraju R R, Cogswell M, Das A. Grad-cam:visual explanations from deep networks via gradient-based localization. 2017 IEEE
International Conference on Computer Vision (ICCV) 2017;618-6. DOI
16. Su C, Yu G, Wang J, Yan Z, Cui L. A review of causality-based fairness machine learning. Intell Robot 2022;2:244-74. DOI
17. Atzori M, Gijsberts A, Kuzborskij I, et al. Characterization of a benchmark database for myoelectric movement classification. IEEE Trans
Neural Syst Rehabil Eng 2015;23:73-83. DOI
18. Atzori M, Gijsberts A, Castellini C, et al. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci Data
2014;1:140053. DOI
19. Kuzborskij I, Gijsberts A, Caputo B. On the challenge of classifying 52 hand movements from surface electromyography. Annu Int Conf
IEEE Eng Med Biol Soc 2012;2012:4931–7. DOI
20. Tenore FVG, Ramos A, Fahmy A, Acharya S, Etienne-Cummings R, Thakor NV. Decoding of individuated fifinger movements using
surface electromyography. IEEE Trans Biomed Eng 2009;56:1427-34. DOI
21. LeCun Y, Jackel LD, Boser B, et al. Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE
Commun Mag 1989;27:41-6. DOI
22. Selvaraju R, Abhishek D, Vedantam D, Cogswell M, Parikh D, Batra D. Grad-CAM: why did you say that? NIPS 2016 Workshop on
Interpretable Machine Learning in Complex Systems 2016. DOI
23. Shapley LS. A value for n-person games. ontributions to the Theory of Games 1953;28:307-318. DOI
24. Tian CP, Xu ZY, Wang LK, Liu YJ. Arc fault detection using artificial intelligence: challenges and benefits. Math Biosci Eng.
2023;20:12404-32. DOI
25. Teng ZC, Xu GH, Liang RH, Li M, Zhang SC. Evaluation of synergy-based hand gesture recognition method against force variation for