Page 102 - Read Online
P. 102

Zhou et al. Intell Robot 2023;3(1):95-112  I http://dx.doi.org/10.20517/ir.2023.05  Page 111


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.




               REFERENCES
               1.  Liu WL, Yin BL, Yan BB. A survey on the exoskeleton rehabilitation robot for the lower limbs. In: 2016 2nd International Conference
                  on Control, Automation and Robotics (ICCAR); 2016 Apr 28-30; Hong Kong, China. IEEE; 2016. pp. 90–94.
               2.  Meng W, Liu Q, Zhou ZD, Ai QS, Sheng B, Xie SQ. Recent development of mechanisms and control strategies for robot-assisted lower
                  limb rehabilitation. Mechatronics 2015;31:132–45. DOI
               3.  Han J, Yang SY, Xia L, Chen YH. Deterministic adaptive robust control with a novel optimal gain design approach for a fuzzy 2-DOF
                  lower limb exoskeleton robot system. IEEE Trans Fuzzy Syst 2021;29:2373-87. DOI
               4.  Sun W, Lin JW, Su SF, Wang N, Er MJ. Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Trans Cybern
                  2021;51:1099-109. DOI
               5.  Long Y, Du ZJ, Cong L, Wang WD, Zhang ZM, Dong W. Active disturbance rejection control based human gait tracking for lower
                  extremity rehabilitation exoskeleton. ISA Trans 2017;67:389-97. DOI
               6.  Asl HJ, Narikiyo T, Kawanishi M. Neural network-based bounded control of robotic exoskeletons without velocity measurements. Contr
                  Eng Pract 2018;80:94-104. DOI
               7.  Torres FJ, Guerrero GV, García CD, Gomez JF, Adam M and Escobar RF. Master-slave synchronization of robot manipulators driven by
                  induction motors. IEEE Latin Am Trans 2016;14:3986-91. (in Spanish) DOI
               8.  Ahmed S, Wang HP, Tian Y. Robust adaptive fractional-order terminal sliding mode control for lower-limb exoskeleton. Asian J of Contr
                  2019;21:473-82. DOI
               9.  Narayan J, Abbas M, Patel B, Dwivedy SK. A Singularity-free terminal sliding mode control of an uncertain paediatric exoskeleton system.
                  In: 2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET); 2022 Mar 22-25; Hammamet,
                  Tunisia. IEEE; 2022. pp. 198–203.
               10. Cao SB, Cao GZ, Zhang YP, Ling ZQ, He BB, Huang SD. Fast-terminal sliding mode control based on dynamic boundary layer for
                  lower limb exoskeleton rehabilitation robot. In: 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation,
                  Control, and Intelligent Systems (CYBER); 2021 July 27-31; Jiaxing, China. IEEE; 2021. pp. 453–458.
               11. Chen SB, Beigi A, Yousefpour A, et al. Recurrent neural network-based robust nonsingular sliding mode control with input saturation for
                  a non-holonomic spherical robot. IEEE Access 2020;8:188441-53. DOI
               12. Fei JT, Feng ZL. Fractional-order finite-time super-twisting sliding mode control of micro gyroscope based on double-loop fuzzy neural
                  network. IEEE Trans Syst Man Cybern, Syst 2021;51:7692-706. DOI
               13. Wang YY, Gu LY, Xu YH, Cao XX. Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal
                  sliding mode. IEEE Trans Ind Electron 2016;63:6194-204. DOI
               14. Yang Y, Chen YQ, Chu YZ, Wang Y, Liang Q. Fractional order adaptive sliding mode controller for permanent magnet synchronous motor.
                  In: 2016 35th Chinese Control Conference (CCC); 2016 July 27-29; Chengdu, China. IEEE; 2016. pp. 3412–3416.
               15. Lavín-Delgado JE, Chávez-Vázquez S, Gómez-Aguilar JF, Alassafi MO, Alsaadi FE, Ahmad AM. Intelligent Neural Integral Sliding-
                  mode Controller for a space robotic manipulator mounted on a free-floating satellite. Adv Space Res 2022; Epub ahead of print. DOI
               16. Lavín-Delgado JE, Beltrán ZZ, Gómez-Aguilar JF, Pérez-Careta E. Controlling a quadrotor UAV by means of a fractional nested saturation
                  control. Adv Space Res 2022; Epub ahead of print. DOI
               17. Li JF, Jahanshahi H, Kacar S, et al. On the variable-order fractional memristor oscillator: Data security applications and synchronization
                  using a type-2 fuzzy disturbance observer-based robust control. Chaos, Solitons & Fractals 2021;145:110681. DOI
               18. Wang YL, Jahanshahi H, Bekiros S, Bezzina F, Chu YM, Aly AA. Deep recurrent neural networks with finite-time terminal sliding mode
                  control for a chaotic fractional-order financial system with market confidence. Chaos, Solitons & Fractals 2021;146:110881. DOI
               19. Xiong PY, Jahanshahi H, Alcaraz R, Chu YM, Gómez-Aguilar JF, Alsaadi FE. Spectral entropy analysis and synchronization of a multi-
                  stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique. Chaos, Solitons &
                  Fractals 2021;144:110576. DOI
               20. Li SH, Du HB, Yu XH. Discrete-time terminal sliding mode control systems based on euler’s discretization. IEEE Trans Automat Contr
                  2014;59:546-52. DOI
               21. Chen B, Hu GQ, Ho DWC, Yu L. Distributed Estimation and Control for Discrete Time-Varying Interconnected Systems. IEEE Trans
                  Automat Contr 2022;67:2192-207. DOI
               22. Sun GH, Ma ZQ, Yu JY. Discrete-time fractional order terminal sliding mode tracking control for linear motor. IEEE Trans Ind Electron
                  2018;65:3386-94. DOI
               23. Ajjanaromvat N, Parnichkun M. Trajectory tracking using online learning LQR with adaptive learning control of a leg-exoskeleton for
                  disorder gait rehabilitation. Mechatronics 2018;51:85-96. DOI
               24. Neuman CP, Tourassis VD. Discrete dynamic robot models. IEEE Trans Syst , Man, Cybern 1985;SMC-15:193-204. DOI
   97   98   99   100   101   102   103   104   105   106   107