Page 46 - Read Online
P. 46

Page 12 of 13                                            Kwee et al. Hepatoma Res 2021;7:8  I  http://dx.doi.org/10.20517/2394-5079.2020.124

               32.  van de Wetering M, Cavallo R, Dooijes D, et al. Armadillo coactivates transcription driven by the product of the drosophila segment
                   polarity gene dTCF. Cell 1997;88:789-99.
               33.  Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology
                   2015;149:1226-39.e4.
               34.  Gao C, Wang Y, Broaddus R, Sun L, Xue F, Zhang W. Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget
                   2018;9:5492-508.
               35.  Li W, Wang H, Ma Z, et al. Multi-omics analysis of microenvironment characteristics and immune escape mechanisms of hepatocellular
                   carcinoma. Front Oncol 2019;9:1019.
               36.  Schulze K, Imbeaud S, Letouzé E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and
                   potential therapeutic targets. Nat Genet 2015;47:505-11.
               37.  Khemlina G, Ikeda S, Kurzrock R. The biology of hepatocellular carcinoma: implications for genomic and immune therapies. Mol Cancer
                   2017;16:149.
               38.  Capurro M, Martin T, Shi W, Filmus J. Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling.
                   J Cell Sci 2014;127:1565-75.
               39.  Li N, Wei L, Liu X, et al. A frizzled-like cysteine-rich domain in glypican-3 mediates wnt binding and regulates hepatocellular carcinoma
                   tumor growth in mice. Hepatology 2019;70:1231-45.
               40.  Wei Y, Van Nhieu JT, Prigent S, Srivatanakul P, Tiollais P, Buendia MA. Altered expression of E-cadherin in hepatocellular carcinoma:
                   correlations with genetic alterations, beta-catenin expression, and clinical features. Hepatology 2002;36:692-701.
               41.  Finch PW, He X, Kelley MJ, et al. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl
                   Acad Sci U S A 1997;94:6770-5.
               42.  Taniguchi K, Roberts LR, Aderca IN, et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and
                   hepatoblastomas. Oncogene 2002;21:4863-71.
               43.  Ding Y, Shen S, Lino AC, Curotto de Lafaille MA, Lafaille JJ. Beta-catenin stabilization extends regulatory T cell survival and induces
                   anergy in nonregulatory T cells. Nat Med 2008;14:162-9.
               44.  Saegusa M, Hashimura M, Yoshida T, Okayasu I. beta- Catenin mutations and aberrant nuclear expression during endometrial
                   tumorigenesis. Br J Cancer 2001;84:209-17.
               45.  Galluzzi L, Spranger S, Fuchs E, López-Soto A. WNT signaling in cancer immunosurveillance. Trends Cell Biol 2019;29:44-65.
               46.  Fujita M, Yamaguchi R, Hasegawa T, et al. Classification of primary liver cancer with immunosuppression mechanisms and correlation
                   with genomic alterations. EBioMedicine 2020;53:102659.
               47.  Guichard C, Amaddeo G, Imbeaud S, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes
                   and pathways in hepatocellular carcinoma. Nat Genet 2012;44:694-8.
               48.  Fan X, Jin S, Li Y, et al. Genetic and epigenetic regulation of E-cadherin signaling in human hepatocellular carcinoma. Cancer Manag
                   Res 2019;11:8947-63.
               49.  Li L, Rao X, Wen Z, et al. Implications of driver genes associated with a high tumor mutation burden identified using next-generation
                   sequencing on immunotherapy in hepatocellular carcinoma. Oncol Lett 2020;19:2739-48.
               50.  Lehwald N, Tao GZ, Jang KY, et al. β-catenin regulates hepatic mitochondrial function and energy balance in mice. Gastroenterology
                   2012;143:754-64.
               51.  Kolthammer JA, Corn DJ, Tenley N, et al. PET imaging of hepatocellular carcinoma with 18F-fluoroethylcholine and 11C-choline. Eur J
                   Nucl Med Mol Imaging 2011;38:1248-56.
               52.  Kwee SA, Sato MM, Kuang Y, et al. [18F]Fluorocholine PET/CT imaging of liver cancer: radiopathologic correlation with tissue
                   phospholipid profiling. Mol Imaging Biol 2017;19:446-55.
               53.  Colnot S, Decaens T, Niwa-Kawakita M, et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to
                   hepatocellular carcinomas. Proc Natl Acad Sci U S A 2004;101:17216-21.
               54.  Kwee SA, Tiirikainen M, Sato MM, et al. Transcriptomics associates molecular features with  F-fluorocholine PET/CT imaging
                                                                                   18
                   phenotype and its potential relationship to survival in hepatocellular carcinoma. Cancer Res 2019;79:1696-704.
               55.  Jaiswal S, Ebert BL. Clonal hematopoiesis in human aging and disease. Science 2019;366:eaan4673.
               56.  Razavi P, Li BT, Brown DN, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med
                   2019;25:1928-37.
               57.  Buscarlet M, Provost S, Zada YF, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and
                   different genetic predispositions. Blood 2017;130:753-62.
               58.  Loberg MA, Bell RK, Goodwin LO, et al. Sequentially inducible mouse models reveal that Npm1 mutation causes malignant
                   transformation of Dnmt3a-mutant clonal hematopoiesis. Leukemia 2019;33:1635-49.
               59.  Patra KC, Kato Y, Mizukami Y, et al. Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and
                   reprogramming lipid metabolism. Nat Cell Biol 2018;20:811-22.
               60.  Nomura R, Saito T, Mitomi H, et al. GNAS mutation as an alternative mechanism of activation of the Wnt/β-catenin signaling pathway in
                   gastric adenocarcinoma of the fundic gland type. Hum Pathol 2014;45:2488-96.
               61.  Romero D, Iglesias M, Vary CP, Quintanilla M. Functional blockade of Smad4 leads to a decrease in beta-catenin levels and signaling
                   activity in human pancreatic carcinoma cells. Carcinogenesis 2008;29:1070-6.
               62.  Hoshida Y, Nijman SM, Kobayashi M, et al. Integrative transcriptome analysis reveals common molecular subclasses of human
                   hepatocellular carcinoma. Cancer Res 2009;69:7385-92.
   41   42   43   44   45   46   47   48   49   50   51