Page 109 - Read Online
P. 109

Page 14 of 15                                          Correnti et al. Hepatoma Res 2018;4:69  I  http://dx.doi.org/10.20517/2394-5079.2018.96


               136.  Gao Y, Ruan B, Liu W, Wang J, Yang X, et al. Knockdown of CD44 inhibits the invasion and metastasis of hepatocellular carcinoma both in
                   vitro and in vivo by reversing epithelial-mesenchymal transition. Oncotarget 2015;6:7828-37.
               137.  Yamashita T, Honda M, Nakamoto Y, Baba M, Nio K, et al. Discrete nature of EpCAM+ and CD90+ cancer stem cells in human
                   hepatocellular carcinoma. Hepatology 2013;57:1484-97.
               138.  Park NR, Cha JH, Jang JW, Bae SH, Jang B, et al. Synergistic effects of CD44 and TGF-beta1 through AKT/GSK-3beta/beta-catenin
                   signaling during epithelial-mesenchymal transition in liver cancer cells. Biochem Biophys Res Commun 2016;477:568-74.
               139.  Warburg O. On the origin of cancer cells. Science 1956;123:309-14.
               140.  Palorini R, Votta G, Balestrieri C, Monestiroli A, Olivieri S, et al. Energy metabolism characterization of a novel cancer stem cell-like line
                   3AB-OS. J Cell Biochem 2014;115:368-79.
               141.  Mancini R, Noto A, Pisanu ME, De Vitis C, Maugeri-Sacca M, et al. Metabolic features of cancer stem cells: the emerging role of lipid
                   metabolism. Oncogene 2018;37:2367-78.
               142.  Thanee M, Loilome W, Techasen A, Sugihara E, Okazaki S, et al. CD44 variant-dependent redox status regulation in liver fluke-associated
                   cholangiocarcinoma: a target for cholangiocarcinoma treatment. Cancer Sci 2016;107:991-1000.
               143.  Song K, Kwon H, Han C, Zhang J, Dash S, et al. Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: regulation by
                   MIR-122. Oncotarget 2015;6:40822-35.
               144.  Hur W, Ryu JY, Kim HU, Hong SW, Lee EB, et al. Systems approach to characterize the metabolism of liver cancer stem cells expressing
                   CD133. Sci Rep 2017;7:45557.
               145.  Chen CL, Uthaya Kumar DB, Punj V, Xu J, Sher L, et al. NANOG metabolically reprograms tumor-initiating stem-like cells through
                   tumorigenic changes in oxidative phosphorylation and fatty acid metabolism. Cell Metab 2016;23:206-19.
               146.  Ma MKF, Lau EYT, Leung DHW, Lo J, Ho NPY, et al. Stearoyl-CoA desaturase regulates sorafenib resistance via modulation of ER stress-
                   induced differentiation. J Hepatol 2017;67:979-90.
               147.  Snyder V, Reed-Newman TC, Arnold L, Thomas SM, Anant S. Cancer stem cell metabolism and potential therapeutic targets. Front Oncol
                   2018;8:203.
               148.  Janzer A, German NJ, Gonzalez-Herrera KN, Asara JM, Haigis MC, et al. Metformin and phenformin deplete tricarboxylic acid cycle and
                   glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci U S A 2014;111:10574-9.
               149.  Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin
                   Oncol 2017;14:11-31.
               150.  Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular
                   carcinoma. J Hematol Oncol 2016;9:74.
               151.  Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/
                   progenitor cells. Biochem Biophys Res Commun 2006;351:820-4.
               152.  Rountree CB, Ding W, He L, Stiles B. Expansion of CD133-expressing liver cancer stem cells in liver-specific phosphatase and tensin
                   homolog deleted on chromosome 10-deleted mice. Stem Cells 2009;27:290-9.
               153.  Agrawal S, Kuvshinoff BW, Khoury T, Yu J, Javle MM, et al. CD24 expression is an independent prognostic marker in cholangiocarcinoma.
                   J Gastrointest Surg 2007;11:445-51.
               154.  Riener MO, Vogetseder A, Pestalozzi BC, Clavien PA, Probst-Hensch N, et al. Cell adhesion molecules P-cadherin and CD24 are markers
                   for carcinoma and dysplasia in the biliary tract. Hum Pathol 2010;41:1558-65.
               155.  Zhu Z, Hao X, Yan M, Yao M, Ge C, et al. Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular
                   carcinoma. Int J Cancer 2010;126:2067-78.
               156.  Yang W, Yan HX, Chen L, Liu Q, He YQ, et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver
                   progenitor cells. Cancer Res 2008;68:4287-95.
               157.  Ho DW, Yang ZF, Yi K, Lam CT, Ng MN, et al. Gene expression profiling of liver cancer stem cells by RNA-sequencing. PLoS One
                   2012;7:e37159.
               158.  de Boer CJ, van Krieken JH, Janssen-van Rhijn CM, Litvinov SV. Expression of Ep-CAM in normal, regenerating, metaplastic, and
                   neoplastic liver. J Pathol 1999;188:201-6.
               159.  Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest
                   2010;120:3326-39.
               160.  Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, et al. CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through
                   STAT3-mediated NANOG regulation. Cell Stem Cell 2011;9:50-63.
               161.  Lee TK, Cheung VC, Lu P, Lau EY, Ma S, et al. Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a
                   therapeutic target for hepatocellular carcinoma. Hepatology 2014;60:179-91.
               162.  Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem
                   cell-like properties. Hepatology 2006;44:240-51.
               163.  Cao L, Fan X, Jing W, Liang Y, Chen R, et al. Osteopontin promotes a cancer stem cell-like phenotype in hepatocellular carcinoma cells via
                   an integrin-NF-kappaB-HIF-1alpha pathway. Oncotarget 2015;6:6627-40.
               164.  Guo Z, Jiang JH, Zhang J, Yang HJ, Yang FQ, et al. COX-2 promotes migration and invasion by the side population of cancer stem cell-like
                   hepatocellular carcinoma cells. Medicine (Baltimore) 2015;94:e1806.
               165.  Yang X, Wang J, Qu S, Zhang H, Ruan B, et al. MicroRNA-200a suppresses metastatic potential of side population cells in human
                   hepatocellular carcinoma by decreasing ZEB2. Oncotarget 2015;6:7918-29.
               166.  Ma S, Chan KW, Lee TK, Tang KH, Wo JY, et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol
                   Cancer Res 2008;6:1146-53.
               167.  Carpentino JE, Hynes MJ, Appelman HD, Zheng T, Steindler DA, et al. Aldehyde dehydrogenase-expressing colon stem cells contribute to
                   tumorigenesis in the transition from colitis to cancer. Cancer Res 2009;69:8208-15.
   104   105   106   107   108   109   110   111   112   113   114