Page 106 - Read Online
P. 106

Correnti et al. Hepatoma Res 2018;4:69  I  http://dx.doi.org/10.20517/2394-5079.2018.96                                          Page 11 of


               30.  Kitade M, Factor VM, Andersen JB, Tomokuni A, Kaji K, et al. Specific fate decisions in adult hepatic progenitor cells driven by MET and
                   EGFR signaling. Genes Dev 2013;27:1706-17.
               31.  Raggi C, Invernizzi P, Andersen JB. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and
                   biological concepts. J Hepatol 2015;62:198-207.
               32.  Woo HG, Lee JH, Yoon JH, Kim CY, Lee HS, et al. Identification of a cholangiocarcinoma-like gene expression trait in hepatocellular
                   carcinoma. Cancer Res 2010;70:3034-41.
               33.  Zhang F, Chen XP, Zhang W, Dong HH, Xiang S, et al. Combined hepatocellular cholangiocarcinoma originating from hepatic progenitor
                   cells: immunohistochemical and double-fluorescence immunostaining evidence. Histopathology 2008;52:224-32.
               34.  Sia D, Tovar V, Moeini A, Llovet JM. Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies. Oncogene
                   2013;32:4861-70.
               35.  Cardinale V, Carpino G, Reid L, Gaudio E, Alvaro D. Multiple cells of origin in cholangiocarcinoma underlie biological, epidemiological
                   and clinical heterogeneity. World J Gastrointest Oncol 2012;4:94-102.
               36.  Andersen JB, Thorgeirsson SS. Genetic profiling of intrahepatic cholangiocarcinoma. Curr Opin Gastroenterol 2012;28:266-72.
               37.  Carpino G, Cardinale V, Onori P, Franchitto A, Berloco PB, et al. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic
                   bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J Anat 2012;220:186-99.
               38.  Razumilava N, Gores GJ. Notch-driven carcinogenesis: the merging of hepatocellular cancer and cholangiocarcinoma into a common
                   molecular liver cancer subtype. J Hepatol 2013;58:1244-5.
               39.  Zucman-Rossi J, Nault JC, Zender L. Primary liver carcinomas can originate from different cell types: a new level of complexity in
                   hepatocarcinogenesis. Gastroenterology 2013;145:53-5.
               40.  Raggi C, Mousa HS, Correnti M, Sica A, Invernizzi P. Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting
                   strategies. Oncogene 2016;35:671-82.
               41.  Holczbauer A, Factor VM, Andersen JB, Marquardt JU, Kleiner DE, et al. Modeling pathogenesis of primary liver cancer in lineage-specific
                   mouse cell types. Gastroenterology 2013;145:221-31.
               42.  Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, et al. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest
                   2012;122:2911-5.
               43.  Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Invest
                   2012;122:3914-8.
               44.  Fidler IJ, Hart IR. Biological diversity in metastatic neoplasms: origins and implications. Science 1982;217:998-1003.
               45.  Heppner GH, Miller BE. Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metastasis Rev 1983;2:5-23.
               46.  Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014;14:275-91.
               47.  Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004;432:324-31.
               48.  Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, et al. Cancer stem cells--perspectives on current status and future directions: AACR
                   Workshop on cancer stem cells. Cancer Res 2006;66:9339-44.
               49.  Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006;441:1068-74.
               50.  Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell
                   2015;16:225-38.
               51.  Boesch M, Sopper S, Zeimet AG, Reimer D, Gastl G, et al. Heterogeneity of cancer stem cells: rationale for targeting the stem cell niche.
                   Biochim Biophys Acta 2016;1866:276-89.
               52.  Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Invest 2013;123:1911-8.
               53.  Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells.
                   Cell 2008;133:704-15.
               54.  O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.
                   Nature 2007;445:106-10.
               55.  Borovski T, De Sousa EMF, Vermeulen L, Medema JP. Cancer stem cell niche: the place to be. Cancer Res 2011;71:634-9.
               56.  Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the
                   Akt/PKB survival pathway. Oncogene 2008;27:1749-58.
               57.  Pattabiraman DR, Weinberg RA. Tackling the cancer stem cells - what challenges do they pose? Nat Rev Drug Discov 2014;13:497-512.
               58.  da Silva-Diz V, Lorenzo-Sanz L, Bernat-Peguera A, Lopez-Cerda M, Munoz P. Cancer cell plasticity: impact on tumor progression and
                   therapy response. Semin Cancer Biol 2018; doi: 10.1016/j.semcancer.2018.08.009.
               59.  Virchow R. An address on the value of pathological experiments. Br Med J 1881;2:198-203.
               60.  Sainz B, Jr., Carron E, Vallespinos M, Machado HL. Cancer stem cells and macrophages: implications in tumor biology and therapeutic
                   strategies. Mediators Inflamm 2016;2016:9012369.
               61.  Rais Y, Zviran A, Geula S, Gafni O, Chomsky E, et al. Deterministic direct reprogramming of somatic cells to pluripotency. Nature
                   2013;502:65-70.
               62.  Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, et al. Normal and neoplastic nonstem cells can spontaneously convert to a
                   stem-like state. Proc Natl Acad Sci U S A 2011;108:7950-5.
               63.  Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol 2005;15:494-501.
               64.  Cheng L, Ramesh AV, Flesken-Nikitin A, Choi J, Nikitin AY. Mouse models for cancer stem cell research. Toxicol Pathol 2010;38:62-71.
               65.  Marquardt JU, Raggi C, Andersen JB, Seo D, Avital I, et al. Human hepatic cancer stem cells are characterized by common stemness traits
                   and diverse oncogenic pathways. Hepatology 2011;54:1031-42.
               66.  Ma S, Chan KW, Hu L, Lee TK, Wo JY, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells.
                   Gastroenterology 2007;132:2542-56.
               67.  Raggi C, Factor VM, Seo D, Holczbauer A, Gillen MC, et al. Epigenetic reprogramming modulates malignant properties of human liver
                   cancer. Hepatology 2014; 59:2251-62.
   101   102   103   104   105   106   107   108   109   110   111