Page 107 - Read Online
P. 107

Page 12 of 15                                          Correnti et al. Hepatoma Res 2018;4:69  I  http://dx.doi.org/10.20517/2394-5079.2018.96


               68.  Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of
                   hepatocellular carcinoma. Cancer Res 2008;68:1451-61.
               69.  Hsieh A, Kim HS, Lim SO, Yu DY, Jung G. Hepatitis B viral X protein interacts with tumor suppressor adenomatous polyposis coli to
                   activate Wnt/beta-catenin signaling. Cancer Lett 2011;300:162-72.
               70.  Raggi C, Correnti M, Sica A, Andersen JB, Cardinale V, et al. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by
                   educating associated macrophages. J Hepatol 2017;66:102-15.
               71.  Kokuryo T, Yokoyama Y, Nagino M. Recent advances in cancer stem cell research for cholangiocarcinoma. J Hepatobiliary Pancreat Sci
                   2012;19:606-13.
               72.  Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell
                   2006;126:663-76.
               73.  Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, et al. Embryonic stem cell markers expression in cancers. Biochem Biophys
                   Res Commun 2009;383:157-62.
               74.  Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, et al. An embryonic stem cell-like gene expression signature in poorly differentiated
                   aggressive human tumors. Nat Genet 2008;40:499-507.
               75.  Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, et al. Functional evidence that the self-renewal gene NANOG regulates human
                   tumor development. Stem Cells 2009;27:993-1005.
               76.  Segal E, Friedman N, Koller D, Regev A. A module map showing conditional activity of expression modules in cancer. Nat Genet
                   2004;36:1090-8.
               77.  Wong DJ, Liu H, Ridky TW, Cassarino D, Segal E, et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell
                   Stem Cell 2008;2:333-44.
               78.  Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse
                   chromosome 15. Nature 1984;307:131-6.
               79.  Mikhail S, He AR. Liver cancer stem cells. Int J Hepatol 2011;2011:486954.
               80.  Salomon DS, Kim N, Saeki T, Ciardiello F. Transforming growth factor-alpha: an oncodevelopmental growth factor. Cancer Cells
                   1990;2:389-97.
               81.  Oishi N, Wang XW. Novel therapeutic strategies for targeting liver cancer stem cells. Int J Biol Sci 2011;7:517-35.
               82.  Villanueva A, Llovet JM. Second-line therapies in hepatocellular carcinoma: emergence of resistance to sorafenib. Clin Cancer Res
                   2012;18:1824-6.
               83.  Morell CM, Strazzabosco M. Notch signaling and new therapeutic options in liver disease. J Hepatol 2014;60:885-90.
               84.  Zong Y, Stanger BZ. Molecular mechanisms of liver and bile duct development. Wiley Interdiscip Rev Dev Biol 2012;1:643-55.
               85.  Gao J, Song Z, Chen Y, Xia L, Wang J, et al. Deregulated expression of Notch receptors in human hepatocellular carcinoma. Dig Liver Dis
                   2008;40:114-21.
               86.  Cadamuro M, Brivio S, Spirli C, Joplin RE, Strazzabosco M, et al. Autocrine and paracrine mechanisms promoting chemoresistance in
                   cholangiocarcinoma. Int J Mol Sci 2017;18.
               87.  Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, et al. Hedgehog is an early and late mediator of pancreatic cancer
                   tumorigenesis. Nature 2003;425:851-6.
               88.  Liao X, Siu MK, Au CW, Wong ES, Chan HY, et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on
                   prognosis, cell invasion and differentiation. Carcinogenesis 2009;30:131-40.
               89.  Oishi N, Yamashita T, Kaneko S. Molecular biology of liver cancer stem cells. Liver Cancer 2014;3:71-84.
               90.  Kango-Singh M, Singh A. Regulation of organ size: insights from the Drosophila Hippo signaling pathway. Dev Dyn 2009;238:1627-37.
               91.  Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by
                   inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005;122:421-34.
               92.  Lian I, Kim J, Okazawa H, Zhao J, Zhao B, et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and
                   differentiation. Genes Dev 2010;24:1106-18.
               93.  Lu L, Li Y, Kim SM, Bossuyt W, Liu P, et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian
                   liver. Proc Natl Acad Sci U S A 2010;107:1437-42.
               94.  Kim GJ, Kim H, Park YN. Increased expression of Yes-associated protein 1 in hepatocellular carcinoma with stemness and combined
                   hepatocellular-cholangiocarcinoma. PLoS One 2013;8:e75449.
               95.  Lee KP, Lee JH, Kim TS, Kim TH, Park HD, et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver
                   tumorigenesis. Proc Natl Acad Sci U S A 2010;107:8248-53.
               96.  Li J, Razumilava N, Gores GJ, Walters S, Mizuochi T, et al. Biliary repair and carcinogenesis are mediated by IL-33-dependent
                   cholangiocyte proliferation. J Clin Invest 2014; 124:3241-51.
               97.  Stauffer JK, Scarzello AJ, Andersen JB, De Kluyver RL, Back TC, et al. Coactivation of AKT and beta-catenin in mice rapidly induces
                   formation of lipogenic liver tumors. Cancer Res 2011;71:2718-27.
               98.  Lau CK, Yang ZF, Fan ST. Role of stem cells in normal liver and cancer. Anticancer Agents Med Chem 2011;11:522-8.
               99.  Zhang XL, Jia Q, Lv L, Deng T, Gao J. Tumorspheres derived from HCC cells are enriched with cancer stem cell-like cells and present high
                   chemoresistance dependent on the Akt pathway. Anticancer Agents Med Chem 2015;15:755-63.
               100.  Feng X, Jiang J, Shi S, Xie H, Zhou L, et al. Knockdown of miR-25 increases the sensitivity of liver cancer stem cells to TRAIL-induced
                   apoptosis via PTEN/PI3K/Akt/Bad signaling pathway. Int J Oncol 2016;49:2600-10.
               101.  Shi DM, Bian XY, Qin CD, Wu WZ. miR-106b-5p promotes stem cell-like properties of hepatocellular carcinoma cells by targeting PTEN
                   via PI3K/Akt pathway. Onco Targets Ther 2018;11:571-85.
               102.  Zhu M, Li W, Lu Y, Dong X, Lin B, et al. HBx drives alpha fetoprotein expression to promote initiation of liver cancer stem cells through
                   activating PI3K/AKT signal pathway. Int J Cancer 2017;140:1346-55.
               103.  Xia H, Ooi LL, Hui KM. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug
                   resistance and recurrence of liver cancer. Hepatology 2013;58:629-41.
   102   103   104   105   106   107   108   109   110   111   112