Page 95 - Read Online
P. 95
Page 189 Gupta et al. Extracell Vesicles Circ Nucleic Acids 2023;4:170-90 https://dx.doi.org/10.20517/evcna.2023.12
158. Somiya M, Kuroda S. Reporter gene assay for membrane fusion of extracellular vesicles. J Extracell Vesicles 2021;10:e12171. DOI
PubMed PMC
159. Somiya M, Kuroda S. Real-time luminescence assay for cytoplasmic cargo delivery of extracellular vesicles. Anal Chem
2021;93:5612-20. DOI PubMed
160. Joshi BS, de Beer MA, Giepmans BNG, Zuhorn IS. Endocytosis of extracellular vesicles and release of their cargo from endosomes.
ACS Nano 2020;14:4444-55. DOI PubMed PMC
161. Kojima R, Bojar D, Rizzi G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for
Parkinson’s disease treatment. Nat Commun 2018;9:1305. DOI PubMed PMC
162. Yim N, Ryu SW, Choi K, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible
protein-protein interaction module. Nat Commun 2016;7:12277. DOI PubMed PMC
163. Wang Q, Yu J, Kadungure T, Beyene J, Zhang H, Lu Q. ARMMs as a versatile platform for intracellular delivery of macromolecules.
Nat Commun 2018;9:960. DOI PubMed PMC
164. Fu B, Ma H, Liu D. Endogenous retroviruses function as gene expression regulatory elements during mammalian pre-implantation
embryo development. Int J Mol Sci 2019;20:790. DOI PubMed PMC
165. Uygur B, Melikov K, Arakelyan A, Margolis LB, Chernomordik LV. Syncytin 1 dependent horizontal transfer of marker genes from
retrovirally transduced cells. Sci Rep 2019;9:17637. DOI PubMed PMC
166. Vargas A, Zhou S, Éthier-Chiasson M, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and
show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J 2014;28:3703-19. DOI
167. Lokossou AG, Toudic C, Nguyen PT, et al. Endogenous retrovirus-encoded Syncytin-2 contributes to exosome-mediated
†
immunosuppression of T cells . Biol Reprod 2020;102:185-98. DOI
168. Perrin P, Janssen L, Janssen H, et al. Retrofusion of intralumenal MVB membranes parallels viral infection and coexists with
exosome release. Curr Biol 2021;31:3884-3893.e4. DOI PubMed PMC
169. Sosale NG, Ivanovska II, Tsai RK, et al. “Marker of Self” CD47 on lentiviral vectors decreases macrophage-mediated clearance and
increases delivery to SIRPA-expressing lung carcinoma tumors. Mol Ther Methods Clin Dev 2016;3:16080. DOI PubMed PMC
170. Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.
Nature 2017;546:498-503. DOI PubMed PMC
171. Belhadj Z, He B, Deng H, et al. A combined “eat me/don’t eat me” strategy based on extracellular vesicles for anticancer
nanomedicine. J Extracell Vesicles 2020;9:1806444. DOI PubMed PMC
172. Cheng L, Zhang X, Tang J, Lv Q, Liu J. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade
of CD47 signal for combined photothermal therapy and cancer immunotherapy. Biomaterials 2021;275:120964. DOI
173. Clayton A, Harris CL, Court J, Mason MD, Morgan BP. Antigen-presenting cell exosomes are protected from complement-mediated
lysis by expression of CD55 and CD59. Eur J Immunol 2003;33:522-31. DOI PubMed
174. Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta 2013;1830:5526-
34. DOI PubMed
175. Liang X, Niu Z, Galli V, et al. Extracellular vesicles engineered to bind albumin demonstrate extended circulation time and lymph
node accumulation in mouse models. J Extracell Vesicles 2022;11:e12248. DOI PubMed PMC
176. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv
Drug Deliv Rev 2016;99:28-51. DOI PubMed PMC
177. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug
delivery. Nat Rev Drug Discov 2021;20:101-24. DOI PubMed PMC
178. Patras L, Ionescu AE, Munteanu C, et al. Trojan horse treatment based on PEG-coated extracellular vesicles to deliver doxorubicin to
melanoma in vitro and in vivo. Cancer Biol Ther 2022;23:1-16. DOI
179. Bittner B, Richter W, Schmidt J. Subcutaneous administration of biotherapeutics: an overview of current challenges and
opportunities. BioDrugs 2018;32:425-40. DOI PubMed PMC
180. Turner MR, Balu-Iyer SV. Challenges and opportunities for the subcutaneous delivery of therapeutic proteins. J Pharm Sci
2018;107:1247-60. DOI PubMed PMC
181. Al Shoyaib A, Archie SR, Karamyan VT. Intraperitoneal route of drug administration: should it be used in experimental animal
studies? Pharm Res 2019;37:12. DOI PubMed PMC
182. Jafarnejad M, Woodruff MC, Zawieja DC, Carroll MC, Moore JE Jr. Modeling lymph flow and fluid exchange with blood vessels in
lymph nodes. Lymphat Res Biol 2015;13:234-47. DOI PubMed PMC
183. Driedonks T, Jiang L, Carlson B, et al. Pharmacokinetics and biodistribution of extracellular vesicles administered intravenously and
intranasally to Macaca nemestrina. J Extracell Biol 2022;1:e59. DOI
184. Banks WA, Sharma P, Bullock KM, Hansen KM, Ludwig N, Whiteside TL. Transport of extracellular vesicles across the blood-brain
barrier: brain pharmacokinetics and effects of inflammation. Int J Mol Sci 2020;21:4407. DOI PubMed PMC
185. Ferreira JV, Da Rosa Soares A, Ramalho J, et al. LAMP2A regulates the loading of proteins into exosomes. Sci Adv 2022;8:1140.
DOI PubMed PMC
186. Kim G, Kim M, Lee Y, Byun JW, Hwang DW, Lee M. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain
using T7-peptide decorated exosomes. J Control Release 2020;317:273-81. DOI
187. Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor

