Page 92 - Read Online
P. 92

Gupta et al. Extracell Vesicles Circ Nucleic Acids 2023;4:170-90  https://dx.doi.org/10.20517/evcna.2023.12                                        Page 186

               69.       Wiklander OPB, Bostancioglu RB, Welsh JA, et al. Systematic methodological evaluation of a multiplex bead-based flow cytometry
                    assay for detection of extracellular vesicle surface signatures. Front Immunol 2018;9:1326.  DOI  PubMed  PMC
               70.       Duijvesz D, Versluis CY, van der Fels CA, et al. Immuno-based detection of extracellular vesicles in urine as diagnostic marker for
                    prostate cancer. Int J Cancer 2015;137:2869-78.  DOI
               71.       Koliha N, Wiencek Y, Heider U, et al. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J
                    Extracell Vesicles 2016;5:29975.  DOI  PubMed  PMC
               72.       Xia Y, Liu M, Wang L, et al. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for
                    detection of exosomes. Biosens Bioelectron 2017;92:8-15.  DOI
               73.       Lai RC, Tan SS, Yeo RW, et al. MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and
                    RNA. J Extracell Vesicles 2016;5:29828.  DOI  PubMed  PMC
               74.       Liang K, Liu F, Fan J, et al. Nanoplasmonic quantification of tumor-derived extracellular vesicles in plasma microsamples for
                    diagnosis and treatment monitoring. Nat Biomed Eng 2017;1:0021.  DOI  PubMed  PMC
               75.       Gupta D, Zickler AM, El Andaloussi S. Dosing extracellular vesicles. Adv Drug Deliv Rev 2021;178:113961.  DOI  PubMed
               76.       Wiklander OP, Nordin JZ, O'Loughlin A, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of
                    administration and targeting. J Extracell Vesicles 2015;4:26316.  DOI  PubMed  PMC
               77.       Pužar Dominkuš P, Stenovec M, Sitar S, et al. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization
                    of contaminating PKH26 nanoparticles. Biochim Biophys Acta Biomembr 2018;1860:1350-61.  DOI
               78.       Simonsen JB. Pitfalls associated with lipophilic fluorophore staining of extracellular vesicles for uptake studies. J Extracell Vesicles
                    2019;8:1582237.  DOI  PubMed  PMC
               79.       Dehghani M, Gulvin SM, Flax J, Gaborski TR. Systematic evaluation of PKH labelling on extracellular vesicle size by nanoparticle
                    tracking analysis. Sci Rep 2020;10:9533.  DOI  PubMed  PMC
               80.       Gupta D, Liang X, Pavlova S, et al. Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence
                    imaging. J Extracell Vesicles 2020;9:1800222.  DOI  PubMed  PMC
               81.       Kooijmans SAA, Gitz-Francois JJJM, Schiffelers RM, Vader P. Recombinant phosphatidylserine-binding nanobodies for targeting of
                    extracellular vesicles to tumor cells: a plug-and-play approach. Nanoscale 2018;10:2413-26.  DOI  PubMed  PMC
               82.       Lai CP, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter.
                    ACS Nano 2014;8:483-94.  DOI  PubMed  PMC
               83.       Teare GF, Horan PK, Slezak SE, Smith C, Hay JB. Long-term tracking of lymphocytes in vivo: the migration of PKH-labeled
                    lymphocytes. Cell Immunol 1991;134:157-70.  DOI  PubMed
               84.       Cilliers C, Liao J, Atangcho L, Thurber GM. Residualization rates of near-infrared dyes for the rational design of molecular imaging
                    agents. Mol Imaging Biol 2015;17:757-62.  DOI  PubMed  PMC
                                                                       99m
               85.       Varga Z, Gyurkó I, Pálóczi K, et al. Radiolabeling of extracellular vesicles with   Tc for quantitative in vivo imaging studies. Cancer
                    Biother Radiopharm 2016;31:168-73.  DOI
               86.       Morishita M, Takahashi Y, Nishikawa M, et al. Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a
                    streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J Pharm Sci
                    2015;104:705-13.  DOI
               87.       Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ. Biodistribution and delivery efficiency of unmodified
                    tumor-derived exosomes. J Control Release 2015;199:145-55.  DOI  PubMed  PMC
               88.       Hu L, Wickline SA, Hood JL. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn Reson Med 2015;74:266-
                    71.  DOI  PubMed  PMC
               89.       Busato A, Bonafede R, Bontempi P, et al. Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes
                    from stem cells: a new method to obtain labeled exosomes. Int J Nanomedicine 2016;11:2481-90.  DOI  PubMed  PMC
               90.       Luo W, Dai Y, Chen Z, Yue X, Andrade-Powell KC, Chang J. Spatial and temporal tracking of cardiac exosomes in mouse using a
                    nano-luciferase-CD63 fusion protein. Commun Biol 2020;3:114.  DOI  PubMed  PMC
               91.       Corso G, Heusermann W, Trojer D, et al. Systematic characterization of extracellular vesicle sorting domains and quantification at
                    the single molecule - single vesicle level by fluorescence correlation spectroscopy and single particle imaging. J Extracell Vesicles
                    2019;8:1663043.  DOI  PubMed  PMC
               92.       Silva AM, Lázaro-Ibáñez E, Gunnarsson A, et al. Quantification of protein cargo loading into engineered extracellular vesicles at
                    single-vesicle and single-molecule resolution. J Extracell Vesicles 2021;10:e12130.  DOI  PubMed  PMC
               93.       Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of
                    targeted exosomes. Nat Biotechnol 2011;29:341-5.  DOI
                                                                    131
               94.       Rashid MH, Borin TF, Ara R, et al. Differential in vivo biodistribution of  I-labeled exosomes from diverse cellular origins and its
                    implication for theranostic application. Nanomedicine 2019;21:102072.  DOI
               95.       Lázaro-Ibáñez E, Faruqu FN, Saleh AF, et al. Selection of fluorescent, bioluminescent, and radioactive tracers to accurately reflect
                    extracellular vesicle biodistribution in vivo. ACS Nano 2021;15:3212-27.  DOI
               96.       Kang M, Jordan V, Blenkiron C, Chamley LW. Biodistribution of extracellular vesicles following administration into animals: a
                    systematic review. J Extracell Vesicles 2021;10:e12085.  DOI  PubMed  PMC
               97.       Takov K, Yellon DM, Davidson SM. Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J
                    Extracell Vesicles 2017;6:1388731.  DOI  PubMed  PMC
   87   88   89   90   91   92   93   94   95   96   97