Page 91 - Read Online
P. 91

Page 185                                   Gupta et al. Extracell Vesicles Circ Nucleic Acids 2023;4:170-90  https://dx.doi.org/10.20517/evcna.2023.12

               41.       Balaj L, Atai NA, Chen W, et al. Heparin affinity purification of extracellular vesicles. Sci Rep 2015;5:10266.  DOI  PubMed  PMC
               42.       Royo F, Zuñiga-Garcia P, Sanchez-Mosquera P, et al. Different EV enrichment methods suitable for clinical settings yield different
                    subpopulations of urinary extracellular vesicles from human samples. J Extracell Vesicles 2016;5:29497.  DOI  PubMed  PMC
               43.       Royo F, Diwan I, Tackett MR, et al. Comparative miRNA analysis of urine extracellular vesicles isolated through five different
                    methods. Cancers (Basel) 2016;8:112.  DOI  PubMed  PMC
               44.       Samsonov R, Shtam T, Burdakov V, et al. Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA
                    analysis: application for prostate cancer diagnostic. Prostate 2016;76:68-79.  DOI
               45.       Gallart-Palau X, Serra A, Wong AS, et al. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent
                    PRecipitation (PROSPR). Sci Rep 2015;5:14664.  DOI  PubMed  PMC
               46.       Deregibus MC, Figliolini F, D'Antico S, et al. Charge-based precipitation of extracellular vesicles. Int J Mol Med 2016;38:1359-66.
                    DOI  PubMed  PMC
               47.       Guzman NA, Guzman DE. A two-dimensional affinity capture and separation mini-platform for the isolation, enrichment, and
                    quantification of biomarkers and its potential use for liquid biopsy. Biomedicines 2020;8:255.  DOI  PubMed  PMC
               48.       Whiteside TL. Extracellular vesicles isolation and their biomarker potential: are we ready for testing? Ann Transl Med 2017;5:54.
                    DOI  PubMed  PMC
               49.       Jauregui R, Srinivasan S, Vojtech LN, et al. Temperature-responsive magnetic nanoparticles for enabling affinity separation of
                    extracellular vesicles. ACS Appl Mater Interfaces 2018;10:33847-56.  DOI  PubMed  PMC
               50.       Zhang K, Yue Y, Wu S, Liu W, Shi J, Zhang Z. Rapid capture and nondestructive release of extracellular vesicles using aptamer-
                    based magnetic isolation. ACS Sens 2019;4:1245-51.  DOI
               51.       Chen J, Xu Y, Lu Y, Xing W. Isolation and visible detection of tumor-derived exosomes from plasma. Anal Chem 2018;90:14207-15.
                    DOI
                                                                                       +   +
               52.       Kim DK, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ. Chromatographically isolated CD63 CD81  extracellular vesicles
                    from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci USA 2016;113:170-5.  DOI  PubMed
                    PMC
               53.       Agarwal K, Saji M, Lazaroff SM, Palmer AF, Ringel MD, Paulaitis ME. Analysis of exosome release as a cellular response to MAPK
                    pathway inhibition. Langmuir 2015;31:5440-8.  DOI  PubMed  PMC
               54.       Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow
                    field-flow fractionation. Nat Cell Biol 2018;20:332-43.  DOI  PubMed  PMC
               55.       Maeki M, Kimura N, Sato Y, Harashima H, Tokeshi M. Advances in microfluidics for lipid nanoparticles and extracellular vesicles
                    and applications in drug delivery systems. Adv Drug Deliv Rev 2018;128:84-100.  DOI
               56.       Liang LG, Kong MQ, Zhou S, et al. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of
                    urinary extracellular vesicles for detection of bladder cancer. Sci Rep 2017;7:46224.  DOI  PubMed  PMC
               57.       Hartjes TA, Mytnyk S, Jenster GW, van Steijn V, van Royen ME. Extracellular vesicle quantification and characterization: common
                    methods and emerging approaches. Bioengineering (Basel) 2019;6:7.  DOI  PubMed  PMC
               58.       Sokolova V, Ludwig AK, Hornung S, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis
                    and scanning electron microscopy. Colloids Surf B Biointerfaces 2011;87:146-50.  DOI
               59.       de Vrij J, Maas SL, van-Nispen M, et al. Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion
                    sensing. Nanomedicine (Lond) 2013;8:1443-58.  DOI
               60.       Andreu Z, Rivas E, Sanguino-Pascual A, et al. Comparative analysis of EV isolation procedures for miRNAs detection in serum
                    samples. J Extracell Vesicles 2016;5:31655.  DOI  PubMed  PMC
               61.       Nath Neerukonda S, Egan NA, Patria J, et al. Comparison of exosomes purified via ultracentrifugation (UC) and Total Exosome
                    Isolation (TEI) reagent from the serum of Marek's disease virus (MDV)-vaccinated and tumor-bearing chickens. J Virol Methods
                    2019;263:1-9.  DOI
               62.       van der Vlist EJ, Nolte-'t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. Fluorescent labeling of nano-sized vesicles released
                    by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc 2012;7:1311-26.  DOI
                    PubMed
               63.       Nolte-'t Hoen EN, van der Vlist EJ, Aalberts M, et al. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived
                    membrane vesicles. Nanomedicine 2012;8:712-20.  DOI  PubMed  PMC
               64.       Ricklefs FL, Maire CL, Reimer R, et al. Imaging flow cytometry facilitates multiparametric characterization of extracellular vesicles
                    in malignant brain tumours. J Extracell Vesicles 2019;8:1588555.  DOI  PubMed  PMC
               65.       Görgens A, Bremer M, Ferrer-Tur R, et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by
                    using fluorescence-tagged vesicles as biological reference material. J Extracell Vesicles 2019;8:1587567.  DOI  PubMed  PMC
               66.       Nolan JP, Duggan E. Analysis of individual extracellular vesicles by flow cytometry. In: Hawley TS, Hawley RG, editors. Flow
                    cytometry protocols. New York: Springer; 2018. p. 79-92.  DOI
               67.       Rikkert LG, Nieuwland R, Terstappen LWMM, Coumans FAW. Quality of extracellular vesicle images by transmission electron
                    microscopy is operator and protocol dependent. J Extracell Vesicles 2019;8:1555419.  DOI  PubMed  PMC
               68.       Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position
                    statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles
                    2018;7:1535750.  DOI  PubMed  PMC
   86   87   88   89   90   91   92   93   94   95   96