Page 93 - Read Online
P. 93

Page 187                                   Gupta et al. Extracell Vesicles Circ Nucleic Acids 2023;4:170-90  https://dx.doi.org/10.20517/evcna.2023.12

               98.       Dehghani M, Gulvin SM, Flax J, Thomas R. Exosome labeling by lipophilic dye PKH26 results in significant increase in vesicle size.
                    BioRxiv 2019:preprint.  DOI
               99.       Skotland T, Iversen TG, Llorente A, Sandvig K. Biodistribution, pharmacokinetics and excretion studies of intravenously injected
                    nanoparticles and extracellular vesicles: Possibilities and challenges. Adv Drug Deliv Rev 2022;186:114326.  DOI  PubMed
               100.      Faruqu  FN,  Wang  JT,  Xu  L,  et  al.  Membrane  Radiolabelling  of  exosomes  for  comparative  biodistribution  analysis  in
                    immunocompetent and immunodeficient mice - a novel and universal approach. Theranostics 2019;9:1666-82.  DOI  PubMed  PMC
               101.      Choi H, Kim Y, Mirzaaghasi A, et al. Exosome-based delivery of super-repressor IκBα relieves sepsis-associated organ damage and
                    mortality. Sci Adv 2020;6:eaaz6980.  DOI  PubMed  PMC
               102.      Imai T, Takahashi Y, Nishikawa M, et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes
                    from the blood circulation in mice. J Extracell Vesicles 2015;4:26238.  DOI  PubMed  PMC
               103.      Skotland T, Sandvig K. Transport of nanoparticles across the endothelial cell layer. Nano Today 2021;36:101029.  DOI
               104.      Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current
                    status and future prospects. Nano Today 2014;9:223-43.  DOI  PubMed  PMC
               105.      Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 2007;100:158-73.  DOI
               106.      Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of
                    microvascular permeability. J Angiogenes Res 2010;2:14.  DOI  PubMed  PMC
               107.      Hennigs JK, Matuszcak C, Trepel M, Körbelin J. Vascular endothelial cells: heterogeneity and targeting approaches. Cells
                    2021;10:2712.  DOI  PubMed  PMC
               108.      Szafranska K, Kruse LD, Holte CF, McCourt P, Zapotoczny B. The wHole story about fenestrations in LSEC. Front Physiol
                    2021;12:1468.  DOI  PubMed  PMC
               109.      Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity.
                    Fluids Barriers CNS 2020;17:69.  DOI  PubMed  PMC
               110.      Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the endothelial barrier: identifying and reconciling controversies.
                    Trends Mol Med 2021;27:314-31.  DOI  PubMed  PMC
               111.      Khan AI, Lu Q, Du D, Lin Y, Dutta P. Quantification of kinetic rate constants for transcytosis of polymeric nanoparticle through
                    blood-brain barrier. Biochim Biophys Acta Gen Subj 2018;1862:2779-87.  DOI  PubMed  PMC
               112.      Morad G, Carman CV, Hagedorn EJ, et al. Tumor-derived extracellular vesicles breach the intact blood-brain barrier via transcytosis.
                    ACS Nano 2019;13:13853-65.  DOI  PubMed  PMC
               113.      Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal
                    blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 2018;135:337-61.  DOI  PubMed
               114.      Grapp M, Wrede A, Schweizer M, et al. Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat
                    Commun 2013;4:2123.  DOI
               115.      Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment.
                    Proc Natl Acad Sci USA 1998;95:4607-12.  DOI  PubMed  PMC
               116.      Moulton KS, Olsen BR, Sonn S, Fukai N, Zurakowski D, Zeng X. Loss of collagen XVIII enhances neovascularization and vascular
                    permeability in atherosclerosis. Circulation 2004;110:1330-6.  DOI  PubMed
               117.      Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K. Nanomedicine for drug targeting: strategies beyond the enhanced
                    permeability and retention effect. Int J Nanomedicine 2014;9:2539-55.  DOI  PubMed  PMC
               118.      Yuan D, Zhao Y, Banks WA, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials
                    2017;142:1-12.  DOI  PubMed  PMC
               119.      Mirzaaghasi A, Han Y, Ahn SH, Choi C, Park JH. Biodistribution and pharmacokinectics of liposomes and exosomes in a mouse
                    model of sepsis. Pharmaceutics 2021;13:427.  DOI  PubMed  PMC
               120.      Banks WA, Sharma P, Hansen KM, Ludwig N, Whiteside TL. Characteristics of exosomes and the vascular landscape regulate
                    exosome sequestration by peripheral tissues and brain. Int J Mol Sci 2022;23:12513.  DOI  PubMed  PMC
               121.      Gordon S, Plüddemann A. The mononuclear phagocytic system. Generation of diversity. Front Immunol 2019;10:1893.  DOI
                    PubMed  PMC
               122.      Tsoi KM, MacParland SA, Ma XZ, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater 2016;15:1212-21.  DOI
                    PubMed  PMC
               123.      Ishibashi H, Nakamura M, Komori A, Migita K, Shimoda S. Liver architecture, cell function, and disease. Semin Immunopathol
                    2009;31:399-409.  DOI  PubMed
               124.      MacPhee PJ, Schmidt EE, Groom AC. Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy.
                    Am J Physiol 1995;269:G692-8.  DOI  PubMed
               125.      Menger MD, Marzi I, Messmer K. in vivo fluorescence microscopy for quantitative analysis of the hepatic microcirculation in
                    hamsters and rats. Eur Surg Res 1991;23:158-69.  DOI  PubMed
               126.      Miyazaki S, Tachibana A, Kitamura A, Nagasawa A, Yamazaki Y, Murase K. Investigation on the optimal position for the
                    quantification of hepatic perfusion by use of dynamic contrast-enhanced computed tomography in rats. Radiol Phys Technol
                    2009;2:183-188.  DOI  PubMed
               127.      Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol
                    Pharm 2008;5:505-15.  DOI  PubMed  PMC
   88   89   90   91   92   93   94   95   96   97   98