Page 127 - Read Online
P. 127
Ahmed et al. Energy Mater. 2025, 5, 500079 https://dx.doi.org/10.20517/energymater.2024.209 Page 13 of 13
Chem. Chem. Phys. 2009, 11, 4962-7. DOI PubMed
24. Zhang, Z.; Wheatle, B. K.; Krajniak, J.; Keith, J. R.; Ganesan, V. Ion mobilities, transference numbers, and inverse haven ratios of
polymeric ionic liquids. ACS. Macro. Lett. 2020, 9, 84-9. DOI PubMed
25. Dyre, J. C.; Maass, P.; Roling, B.; Sidebottom, D. L. Fundamental questions relating to ion conduction in disordered solids. Rep. Prog.
Phys. 2009, 72, 046501. DOI
26. Gainaru, C.; Stacy, E. W.; Bocharova, V.; et al. Mechanism of conductivity relaxation in liquid and polymeric electrolytes: direct link
between conductivity and diffusivity. J. Phys. Chem. B. 2016, 120, 11074-83. DOI
27. Maass, P.; Meyer, M.; Bunde, A. Nonstandard relaxation behavior in ionically conducting materials. Phys. Rev. B. Condens. Matter.
1995, 51, 8164-77. DOI PubMed
28. Roling, B.; Martiny, C.; Brückner, S. Ion transport in glass: influence of glassy structure on spatial extent of nonrandom ion hopping.
Phys. Rev. B. 2001, 63, 214203. DOI
29. Romanenko, K.; Pringle, J. M.; O’Dell, L. A.; Forsyth, M. New insights into the thermal behaviour of organic ionic plastic crystals:
magnetic resonance imaging of polycrystalline morphology alterations induced by solid-solid phase transitions. Phys. Chem. Chem.
Phys. 2015, 17, 18991-9000. DOI PubMed
30. Pas, S. J.; Huang, J.; Forsyth, M.; MacFarlane, D. R.; Hill, A. J. Defect-assisted conductivity in organic ionic plastic crystals. J. Chem.
Phys. 2005, 122, 064704. DOI PubMed
31. Chen, F.; Jin, L.; de, L. S. W.; Pringle, J. M.; Forsyth, M. Atomistic simulation of structure and dynamics of the plastic crystal
diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. J. Chem. Phys. 2013, 138, 244503. DOI PubMed
32. Chen, F.; de, L. S. W.; Forsyth, M. Dynamic heterogeneity and ionic conduction in an organic ionic plastic crystal and the role of
vacancies. J. Phys. Chem. Lett. 2013, 4, 4085-9. DOI
33. Forsyth, M.; Chen, F.; O'dell, L.; Romanenko, K. New insights into ordering and dynamics in organic ionic plastic crystal electrolytes.
Solid. State. Ion. 2016, 288, 160-6. DOI
34. Ishai, P. B.; Talary, M. S.; Caduff, A.; Levy, E.; Feldman, Y. Electrode polarization in dielectric measurements: a review. Meas. Sci.
Technol. 2013, 24, 102001. DOI
35. Dyre, J. C. The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 1988, 64, 2456-68. DOI
36. Schrøder, T. B.; Dyre, J. C. ac Hopping conduction at extreme disorder takes place on the percolating cluster. Phys. Rev. Lett. 2008,
101, 025901. DOI PubMed
37. Madsen, I. C.; Scarlett, N. V. Y.; Webster, N. A. S. Quantitative phase analysis. In: Kolb, U.; Shankland, K.; Meshi, L.; Avilov, A.;
David, W.; editors, Uniting electron crystallography and powder diffraction. Dordrecht: Springer; 2012, pp.207-18. DOI
38. Bish, D. L.; Howard, S. A. Quantitative phase analysis using the rietveld method. J. Appl. Cryst. 1988, 21, 86-91. DOI
39. Kashyap, H. K.; Annapureddy, H. V. R.; Raineri, F. O.; Margulis, C. J. How is charge transport different in ionic liquids and
electrolyte solutions? J. Phys. Chem. B. 2011, 115, 13212-21. DOI
40. Schoenert, H. J. Evaluation of velocity correlation coefficients from experimental transport data in electrolytic systems. J. Phys. Chem.
1984, 88, 3359-63. DOI
41. Ahmed, M. D.; Zhu, Z.; Khamzin, A.; Paddison, S. J.; Sokolov, A. P.; Popov, I. Effect of ion mass on dynamic correlations in ionic
liquids. J. Phys. Chem. B. 2023, 127, 10411-21. DOI PubMed
1
19
42. Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-gradient Spin-echo H and F NMR ionic diffusion coefficient, viscosity, and ionic
conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B. 2001, 105, 4603-10. DOI
43. Tokudaa, H.; Hayamizu, K.; Ishii, K.; Abu, B. H. S. M.; Watanabe, M. Physicochemical properties and structures of room temperature
ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B. 2004, 108, 16593-600. DOI
44. Tokudaa, H.; Hayamizu, K.; Ishii, K.; Abu, B. H. S. M.; Watanabe, M. Physicochemical properties and structures of room temperature
ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B. 2005, 109, 6103-10. DOI
45. Tokudaa, H.; Ishii, K.; Abu, B. H. S. M.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. Physicochemical properties and structures of
room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B. 2006, 110, 2833-9. DOI
46. Tokudaa, H.; Tsuzuki, S.; Abu Bin Hasan Susan, M.; Hayamizu, K.; Watanabe, M. How ionic are room-temperature ionic liquids? An
indicator of the physicochemical properties. J. Phys. Chem. B. 2006, 110, 19593-600. DOI
47. Sangoro, J. R.; Kremer, F. Charge transport and glassy dynamics in ionic liquids. ACC. Chem. Res. 2012, 45, 525-32. DOI PubMed
48. Harris, K. R. Relations between the fractional Stokes-Einstein and Nernst-Einstein equations and velocity correlation coefficients in
ionic liquids and molten salts. J. Phys. Chem. B. 2010, 114, 9572-7. DOI PubMed
49. Harris, K. R. Can the transport properties of molten salts and ionic liquids be used to determine ion association? J. Phys. Chem. B.
2016, 120, 12135-47. DOI PubMed
50. Harris, K. R.; Kanakubo, M. Self-diffusion coefficients and related transport properties for a number of fragile ionic liquids. J. Chem.
Eng. Data. 2016, 61, 2399-411. DOI