Page 127 - Read Online
P. 127

Ahmed et al. Energy Mater. 2025, 5, 500079  https://dx.doi.org/10.20517/energymater.2024.209   Page 13 of 13

                   Chem. Chem. Phys. 2009, 11, 4962-7.  DOI  PubMed
               24.      Zhang, Z.; Wheatle, B. K.; Krajniak, J.; Keith, J. R.; Ganesan, V. Ion mobilities, transference numbers, and inverse haven ratios of
                   polymeric ionic liquids. ACS. Macro. Lett. 2020, 9, 84-9.  DOI  PubMed
               25.      Dyre, J. C.; Maass, P.; Roling, B.; Sidebottom, D. L. Fundamental questions relating to ion conduction in disordered solids. Rep. Prog.
                   Phys. 2009, 72, 046501.  DOI
               26.      Gainaru, C.; Stacy, E. W.; Bocharova, V.; et al. Mechanism of conductivity relaxation in liquid and polymeric electrolytes: direct link
                   between conductivity and diffusivity. J. Phys. Chem. B. 2016, 120, 11074-83.  DOI
               27.      Maass, P.; Meyer, M.; Bunde, A. Nonstandard relaxation behavior in ionically conducting materials. Phys. Rev. B. Condens. Matter.
                   1995, 51, 8164-77.  DOI  PubMed
               28.      Roling, B.; Martiny, C.; Brückner, S. Ion transport in glass: influence of glassy structure on spatial extent of nonrandom ion hopping.
                   Phys. Rev. B. 2001, 63, 214203.  DOI
               29.      Romanenko, K.; Pringle, J. M.; O’Dell, L. A.; Forsyth, M. New insights into the thermal behaviour of organic ionic plastic crystals:
                   magnetic resonance imaging of polycrystalline morphology alterations induced by solid-solid phase transitions. Phys. Chem. Chem.
                   Phys. 2015, 17, 18991-9000.  DOI  PubMed
               30.      Pas, S. J.; Huang, J.; Forsyth, M.; MacFarlane, D. R.; Hill, A. J. Defect-assisted conductivity in organic ionic plastic crystals. J. Chem.
                   Phys. 2005, 122, 064704.  DOI  PubMed
               31.      Chen, F.; Jin, L.; de, L. S. W.; Pringle, J. M.; Forsyth, M. Atomistic simulation of structure and dynamics of the plastic crystal
                   diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. J. Chem. Phys. 2013, 138, 244503.  DOI  PubMed
               32.      Chen, F.; de, L. S. W.; Forsyth, M. Dynamic heterogeneity and ionic conduction in an organic ionic plastic crystal and the role of
                   vacancies. J. Phys. Chem. Lett. 2013, 4, 4085-9.  DOI
               33.      Forsyth, M.; Chen, F.; O'dell, L.; Romanenko, K. New insights into ordering and dynamics in organic ionic plastic crystal electrolytes.
                   Solid. State. Ion. 2016, 288, 160-6.  DOI
               34.      Ishai, P. B.; Talary, M. S.; Caduff, A.; Levy, E.; Feldman, Y. Electrode polarization in dielectric measurements: a review. Meas. Sci.
                   Technol. 2013, 24, 102001.  DOI
               35.      Dyre, J. C. The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 1988, 64, 2456-68.  DOI
               36.      Schrøder, T. B.; Dyre, J. C. ac Hopping conduction at extreme disorder takes place on the percolating cluster. Phys. Rev. Lett. 2008,
                   101, 025901.  DOI  PubMed
               37.      Madsen, I. C.; Scarlett, N. V. Y.; Webster, N. A. S. Quantitative phase analysis. In: Kolb, U.; Shankland, K.; Meshi, L.; Avilov, A.;
                   David, W.; editors, Uniting electron crystallography and powder diffraction. Dordrecht: Springer; 2012, pp.207-18.  DOI
               38.      Bish, D. L.; Howard, S. A. Quantitative phase analysis using the rietveld method. J. Appl. Cryst. 1988, 21, 86-91.  DOI
               39.      Kashyap, H. K.; Annapureddy, H. V. R.; Raineri, F. O.; Margulis, C. J. How is charge transport different in ionic liquids and
                   electrolyte solutions? J. Phys. Chem. B. 2011, 115, 13212-21.  DOI
               40.      Schoenert, H. J. Evaluation of velocity correlation coefficients from experimental transport data in electrolytic systems. J. Phys. Chem.
                   1984, 88, 3359-63.  DOI
               41.      Ahmed, M. D.; Zhu, Z.; Khamzin, A.; Paddison, S. J.; Sokolov, A. P.; Popov, I. Effect of ion mass on dynamic correlations in ionic
                   liquids. J. Phys. Chem. B. 2023, 127, 10411-21.  DOI  PubMed
                                                                1
                                                                     19
               42.      Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-gradient Spin-echo  H and  F NMR ionic diffusion coefficient, viscosity, and ionic
                   conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B. 2001, 105, 4603-10.  DOI
               43.      Tokudaa, H.; Hayamizu, K.; Ishii, K.; Abu, B. H. S. M.; Watanabe, M. Physicochemical properties and structures of room temperature
                   ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B. 2004, 108, 16593-600.  DOI
               44.      Tokudaa, H.; Hayamizu, K.; Ishii, K.; Abu, B. H. S. M.; Watanabe, M. Physicochemical properties and structures of room temperature
                   ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B. 2005, 109, 6103-10.  DOI
               45.      Tokudaa, H.; Ishii, K.; Abu, B. H. S. M.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M. Physicochemical properties and structures of
                   room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B. 2006, 110, 2833-9.  DOI
               46.      Tokudaa, H.; Tsuzuki, S.; Abu Bin Hasan Susan, M.; Hayamizu, K.; Watanabe, M. How ionic are room-temperature ionic liquids? An
                   indicator of the physicochemical properties. J. Phys. Chem. B. 2006, 110, 19593-600.  DOI
               47.      Sangoro, J. R.; Kremer, F. Charge transport and glassy dynamics in ionic liquids. ACC. Chem. Res. 2012, 45, 525-32.  DOI  PubMed
               48.      Harris, K. R. Relations between the fractional Stokes-Einstein and Nernst-Einstein equations and velocity correlation coefficients in
                   ionic liquids and molten salts. J. Phys. Chem. B. 2010, 114, 9572-7.  DOI  PubMed
               49.      Harris, K. R. Can the transport properties of molten salts and ionic liquids be used to determine ion association? J. Phys. Chem. B.
                   2016, 120, 12135-47.  DOI  PubMed
               50.      Harris, K. R.; Kanakubo, M. Self-diffusion coefficients and related transport properties for a number of fragile ionic liquids. J. Chem.
                   Eng. Data. 2016, 61, 2399-411.  DOI
   122   123   124   125   126   127   128   129   130   131   132