Page 126 - Read Online
P. 126
Page 12 of 13 Ahmed et al. Energy Mater. 2025, 5, 500079 https://dx.doi.org/10.20517/energymater.2024.209
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2025.
REFERENCES
1. Macfarlane, D. R.; Forsyth, M.; Howlett, P. C.; et al. Ionic liquids and their solid-state analogues as materials for energy generation
and storage. Nat. Rev. Mater. 2016, 1, 20155. DOI
2. Thomas, M. L.; Hatakeyama-Sato, K.; Nanbu, S.; Yoshizawa-Fujita, M. Organic ionic plastic crystals: flexible solid electrolytes for
lithium secondary batteries. Energy. Adv. 2023, 2, 748-64. DOI
3. Basile, A.; Hilder, M.; Makhlooghiazad, F.; et al. Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high
performance sodium energy storage technologies. Adv. Energy. Mater. 2018, 8, 1703491. DOI
4. Makhlooghiazad, F.; Gunzelmann, D.; Hilder, M.; et al. Mixed phase solid-state plastic crystal electrolytes based on a phosphonium
cation for sodium devices. Adv. Energy. Mater. 2017, 7, 1601272. DOI
5. Zhu, H.; Rana, U. A.; Ranganathan, V.; et al. Proton transport behaviour and molecular dynamics in the guanidinium triflate solid and
its mixtures with triflic acid. J. Mater. Chem. A. 2014, 2, 681-91. DOI
6. Zhu, H.; Macfarlane, D. R.; Pringle, J. M.; Forsyth, M. Organic ionic plastic crystals as solid-state electrolytes. Trends. Chem. 2019, 1,
126-40. DOI
7. Sonigara, K. K.; Shao, Z.; Prasad, J.; et al. Organic ionic plastic crystals as hole transporting layer for stable and efficient perovskite
solar cells. Adv. Funct. Mater. 2020, 30, 2001460. DOI
8. Pringle, J. M. Recent progress in the development and use of organic ionic plastic crystal electrolytes. Phys. Chem. Chem. Phys. 2013,
15, 1339-51. DOI PubMed
9. Matuszek, K.; Piper, S. L.; Brzęczek-Szafran, A.; et al. Unexpected energy applications of ionic liquids. Adv. Mater. 2024, 36,
e2313023. DOI
10. Pringle, J. M.; Howlett, P. C.; Macfarlane, D. R.; Forsyth, M. Organic ionic plastic crystals: recent advances. J. Mater. Chem. 2010,
20, 2056. DOI
11. Jin, L.; Nairn, K. M.; Forsyth, C. M.; et al. Structure and transport properties of a plastic crystal ion conductor:
diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. J. Am. Chem. Soc. 2012, 134, 9688-97. DOI
12. Ueda, H.; Saito, N.; Nakanishi, A.; et al. Unveiling the dynamic change in the ionic conductivity of a solid-state binary mixture
comprising an organic ionic plastic crystal and LiBF4. Mater. Today. Phys. 2024, 43, 101395. DOI
13. Macfarlane, D. R.; Huang, J.; Forsyth, M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary
batteries. Nature 1999, 402, 792-4. DOI
14. Forsyth, M.; Chimdi, T.; Seeber, A.; Gunzelmann, D.; Howlett, P. C. Structure and dynamics in an organic ionic plastic crystal, N-
ethyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl) amide, mixed with a sodium salt. J. Mater. Chem. A. 2014, 2, 3993-4003.
DOI
15. Huang, J. Solid state lithium ion conduction in pyrrolidinium imide-lithium imide salt mixtures. Solid. State. Ion. 2000, 136-7, 447-52.
DOI
16. Forsyth, M.; Huang, J.; Macfarlane, D. R. Lithium doped N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl)amide fast-ion
conducting plastic crystals. J. Mater. Chem. 2000, 10, 2259-65. DOI
17. Macfarlane, D. R.; Forsyth, M. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv. Mater. 2001, 13, 957-
66. DOI
18. Biernacka, K.; Al-Masri, D.; Yunis, R.; Zhu, H.; Hollenkamp, A. F.; Pringle, J. M. Development of new solid-state electrolytes based
on a hexamethylguanidinium plastic crystal and lithium salts. Electrochim. Acta. 2020, 357, 136863. DOI
19. Biernacka, K.; Makhlooghiazad, F.; Popov, I.; et al. Investigation of unusual conductivity behavior and ion dynamics in
hexamethylguanidinium bis(fluorosulfonyl)imide-based electrolytes for sodium batteries. J. Phys. Chem. C. 2021, 125, 12518-30.
DOI
20. Biernacka, K.; Makhlooghiazad, F.; Popov, I.; et al. Exploration of phase diagram, structural and dynamic behavior of [HMG][FSI]
mixtures with NaFSI across an extended composition range. Phys. Chem. Chem. Phys. 2022, 24, 16712-23. DOI
21. Popov, I.; Zhu, H.; Khamzin, A.; et al. Collective ion dynamics in ionic plastic crystals: the origin of conductivity suppression. J. Phys.
Chem. C. 2023, 127, 15918-27. DOI
22. Popov, I.; Biernacka, K.; Zhu, H.; et al. Strongly correlated ion dynamics in plastic ionic crystals and polymerized ionic liquids. J.
Phys. Chem. C. 2020, 124, 17889-96. DOI
23. MacFarlane, D. R.; Forsyth, M.; Izgorodina, E. I.; Abbott, A. P.; Annat, G.; Fraser, K. On the concept of ionicity in ionic liquids. Phys.