Page 126 - Read Online
P. 126

Page 12 of 13        Ahmed et al. Energy Mater. 2025, 5, 500079  https://dx.doi.org/10.20517/energymater.2024.209

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.


               REFERENCES
               1.       Macfarlane, D. R.; Forsyth, M.; Howlett, P. C.; et al. Ionic liquids and their solid-state analogues as materials for energy generation
                   and storage. Nat. Rev. Mater. 2016, 1, 20155.  DOI
               2.       Thomas, M. L.; Hatakeyama-Sato, K.; Nanbu, S.; Yoshizawa-Fujita, M. Organic ionic plastic crystals: flexible solid electrolytes for
                   lithium secondary batteries. Energy. Adv. 2023, 2, 748-64.  DOI
               3.       Basile, A.; Hilder, M.; Makhlooghiazad, F.; et al. Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high
                   performance sodium energy storage technologies. Adv. Energy. Mater. 2018, 8, 1703491.  DOI
               4.       Makhlooghiazad, F.; Gunzelmann, D.; Hilder, M.; et al. Mixed phase solid-state plastic crystal electrolytes based on a phosphonium
                   cation for sodium devices. Adv. Energy. Mater. 2017, 7, 1601272.  DOI
               5.       Zhu, H.; Rana, U. A.; Ranganathan, V.; et al. Proton transport behaviour and molecular dynamics in the guanidinium triflate solid and
                   its mixtures with triflic acid. J. Mater. Chem. A. 2014, 2, 681-91.  DOI
               6.       Zhu, H.; Macfarlane, D. R.; Pringle, J. M.; Forsyth, M. Organic ionic plastic crystals as solid-state electrolytes. Trends. Chem. 2019, 1,
                   126-40.  DOI
               7.       Sonigara, K. K.; Shao, Z.; Prasad, J.; et al. Organic ionic plastic crystals as hole transporting layer for stable and efficient perovskite
                   solar cells. Adv. Funct. Mater. 2020, 30, 2001460.  DOI
               8.       Pringle, J. M. Recent progress in the development and use of organic ionic plastic crystal electrolytes. Phys. Chem. Chem. Phys. 2013,
                   15, 1339-51.  DOI  PubMed
               9.       Matuszek, K.; Piper, S. L.; Brzęczek-Szafran, A.; et al. Unexpected energy applications of ionic liquids. Adv. Mater. 2024, 36,
                   e2313023.  DOI
               10.      Pringle, J. M.; Howlett, P. C.; Macfarlane, D. R.; Forsyth, M. Organic ionic plastic crystals: recent advances. J. Mater. Chem. 2010,
                   20, 2056.  DOI
               11.      Jin,  L.;  Nairn,  K.  M.;  Forsyth,  C.  M.;  et  al.  Structure  and  transport  properties  of  a  plastic  crystal  ion  conductor:
                   diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. J. Am. Chem. Soc. 2012, 134, 9688-97.  DOI
               12.      Ueda, H.; Saito, N.; Nakanishi, A.; et al. Unveiling the dynamic change in the ionic conductivity of a solid-state binary mixture
                   comprising an organic ionic plastic crystal and LiBF4. Mater. Today. Phys. 2024, 43, 101395.  DOI
               13.      Macfarlane, D. R.; Huang, J.; Forsyth, M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary
                   batteries. Nature 1999, 402, 792-4.  DOI
               14.      Forsyth, M.; Chimdi, T.; Seeber, A.; Gunzelmann, D.; Howlett, P. C. Structure and dynamics in an organic ionic plastic crystal, N-
                   ethyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl) amide, mixed with a sodium salt. J. Mater. Chem. A. 2014, 2, 3993-4003.
                   DOI
               15.      Huang, J. Solid state lithium ion conduction in pyrrolidinium imide-lithium imide salt mixtures. Solid. State. Ion. 2000, 136-7, 447-52.
                   DOI
               16.      Forsyth, M.; Huang, J.; Macfarlane, D. R. Lithium doped N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl)amide fast-ion
                   conducting plastic crystals. J. Mater. Chem. 2000, 10, 2259-65.  DOI
               17.      Macfarlane, D. R.; Forsyth, M. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv. Mater. 2001, 13, 957-
                   66.  DOI
               18.      Biernacka, K.; Al-Masri, D.; Yunis, R.; Zhu, H.; Hollenkamp, A. F.; Pringle, J. M. Development of new solid-state electrolytes based
                   on a hexamethylguanidinium plastic crystal and lithium salts. Electrochim. Acta. 2020, 357, 136863.  DOI
               19.      Biernacka, K.; Makhlooghiazad, F.; Popov, I.; et al. Investigation of unusual conductivity behavior and ion dynamics in
                   hexamethylguanidinium bis(fluorosulfonyl)imide-based electrolytes for sodium batteries. J. Phys. Chem. C. 2021, 125, 12518-30.
                   DOI
               20.      Biernacka, K.; Makhlooghiazad, F.; Popov, I.; et al. Exploration of phase diagram, structural and dynamic behavior of [HMG][FSI]
                   mixtures with NaFSI across an extended composition range. Phys. Chem. Chem. Phys. 2022, 24, 16712-23.  DOI
               21.      Popov, I.; Zhu, H.; Khamzin, A.; et al. Collective ion dynamics in ionic plastic crystals: the origin of conductivity suppression. J. Phys.
                   Chem. C. 2023, 127, 15918-27.  DOI
               22.      Popov, I.; Biernacka, K.; Zhu, H.; et al. Strongly correlated ion dynamics in plastic ionic crystals and polymerized ionic liquids. J.
                   Phys. Chem. C. 2020, 124, 17889-96.  DOI
               23.      MacFarlane, D. R.; Forsyth, M.; Izgorodina, E. I.; Abbott, A. P.; Annat, G.; Fraser, K. On the concept of ionicity in ionic liquids. Phys.
   121   122   123   124   125   126   127   128   129   130   131