Page 15 - Read Online
P. 15
Page 10 of 11 Lv et al. Energy Mater 2024;4:400018 https://dx.doi.org/10.20517/energymater.2023.90
REFERENCES
1. Liu H, Liu X, Wang S, Liu H, Li L. Transition metal based battery-type electrodes in hybrid supercapacitors: a review. Energy Stor
Mater 2020;28:122-45. DOI
2. Xie J, Lu YC. A retrospective on lithium-ion batteries. Nat Commun 2020;11:2499. DOI PubMed PMC
3. Shen X, Liu H, Cheng XB, Yan C, Huang JQ. Beyond lithium ion batteries: higher energy density battery systems based on lithium
metal anodes. Energy Stor Mater 2018;12:161-75. DOI
4. Ni J, Zhu X, Yuan Y, et al. Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage.
Nat Commun 2020;11:1212. DOI PubMed PMC
5. Li Q, He G, Ding Y. Applications of low-melting-point metals in rechargeable metal batteries. Chemistry 2021;27:6407-21. DOI
6. Shi Y, Yang W, Bai Q, Qin J, Zhang Z. Alloying/dealloying mechanisms, microstructural modulation and mechanical properties of
nanoporous silver via a liquid metal-assisted alloying/dealloying strategy. J Alloys Compd 2021;872:159675. DOI
7. Chi SS, Wang Q, Han B, et al. Lithiophilic Zn sites in porous CuZn alloy induced uniform Li nucleation and dendrite-free Li metal
deposition. Nano Lett 2020;20:2724-32. DOI
8. Yu J, Xia J, Guan X, et al. Self-healing liquid metal confined in carbon nanofibers/carbon nanotubes paper as a free-standing anode for
flexible lithium-ion batteries. Electrochim Acta 2022;425:140721. DOI
9. Yun J, Park BK, Won ES, et al. Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-
metal anode. ACS Energy Lett 2020;5:3108-14. DOI
10. Won P, Jeong S, Majidi C, Ko SH. Recent advances in liquid-metal-based wearable electronics and materials. iScience
2021;24:102698. DOI PubMed PMC
11. Jia H, Wang Z, Dirican M, et al. A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J Mater Chem A
2021;9:5597-605. DOI
12. Lv Y, Zhang QX, Li C, et al. Bottom-up Li deposition by constructing a multiporous lithiophilic gradient layer on 3D Cu foam for
stable Li metal anodes. ACS Sustain Chem Eng 2022;10:7188-95. DOI
13. Hyun G, Cao S, Ham Y, et al. Three-dimensional, submicron porous electrode with a density gradient to enhance charge carrier
transport. ACS Nano 2022;16:9762-71. DOI
14. Park S, Jeong SY, Lee TK, et al. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-
density lithium-ion batteries. Nat Commun 2021;12:838. DOI PubMed PMC
15. Ming J, Cao Z, Wu Y, et al. New insight on the role of electrolyte additives in rechargeable lithium ion batteries. ACS Energy Lett
2019;4:2613-22. DOI
16. Meda US, Lal L, M S, Garg P. Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: a review on the recent
advances. J Energy Stor 2022;47:103564. DOI
17. Liu W, Liu P, Mitlin D. Solid electrolyte interphases: review of emerging concepts in SEI analysis and artificial SEI membranes for
lithium, sodium, and potassium metal battery anodes. Adv Energy Mater 2020;10:2070177. DOI
18. Wu Y, Huang L, Huang X, et al. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long
cycle life. Energy Environ Sci 2017;10:1854-61. DOI
19. Meng J, Li C. Planting CuGa seeds assisted with liquid metal for selective wrapping deposition of lithium. Energy Stor Mater
2
2021;37:466-75. DOI
20. Guo X, Zhang L, Ding Y, Goodenough JB, Yu G. Room-temperature liquid metal and alloy systems for energy storage applications.
Energy Environ Sci 2019;12:2605-19. DOI
21. Wei C, Tan L, Zhang Y, et al. Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy
Stor Mater 2022;50:473-94. DOI
22. Yang Z, Yang D, Zhao X, et al. From liquid metal to stretchable electronics: overcoming the surface tension. Sci China Mater
2022;65:2072-88. DOI
23. Yan J, Lu Y, Chen G, Yang M, Gu Z. Advances in liquid metals for biomedical applications. Chem Soc Rev 2018;47:2518-33. DOI
-1
24. Han B, Xu D, Chi SS, et al. 500 Wh kg class Li metal battery enabled by a self-organized core-shell composite anode. Adv Mater
2020;32:e2004793. DOI
25. Sengupta S, Patra A, Akhtar M, Das K, Majumder SB, Das S. 3D microporous Sn-Sb-Ni alloy impregnated Ni foam as high-
performance negative electrode for lithium-ion batteries. J Alloys Compd 2017;705:290-300. DOI
26. Ozutemiz KB, Wissman J, Ozdoganlar OB, Majidi C. EGaIn-Metal interfacing for liquid metal circuitry and microelectronics
integration. Adv Mater Inter 2018;5:1701596. DOI
27. Ding Y, Guo X, Qian Y, Xue L, Dolocan A, Yu G. Room-temperature all-liquid-metal batteries based on fusible alloys with regulated
interfacial chemistry and wetting. Adv Mater 2020;32:e2002577. DOI
28. Wei C, Tan L, Tao Y, et al. Interfacial passivation by room-temperature liquid metal enabling stable 5 V-class lithium-metal batteries
in commercial carbonate-based electrolyte. Energy Stor Mater 2021;34:12-21. DOI
29. Kong W, Wang Z, Wang M, et al. Oxide-mediated formation of chemically stable tungsten-liquid metal mixtures for enhanced thermal
interfaces. Adv Mater 2019;31:e1904309. DOI
30. Guo X, Ding Y, Xue L, et al. A self-healing room-temperature liquid-metal anode for alkali-ion batteries. Adv Funct Mater
2018;28:1804649. DOI