Page 139 - Read Online
P. 139
Xiao et al. Energy Mater 2023;3:300007 https://dx.doi.org/10.20517/energymater.2022.84 Page 13 of 13
Power Sources 2017;341:36-45. DOI
80. Gong K, Ma X, Conforti KM, et al. A zinc-iron redox-flow battery under $100 per kW h of system capital cost. Energy Environ Sci
2015;8:2941-5. DOI
81. Li B, Nie Z, ijayakumar M, et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat
Commun 2015;6:6303. DOI
82. Wang C, Lai Q, Feng K, Xu P, Li X, Zhang H. From zeolite-type metal organic framework to porous nano-sheet carbon: high activity
positive electrode material for bromine-based flow batteries. Nano Energy 2018;44:240-7. DOI
83. Winsberg J, Stolze C, Schwenke A, Muench S, Hager MD, Schubert US. Aqueous 2,2,6,6-tetramethylpiperidine-N-oxyl catholytes
for a high-capacity and high current density oxygen-insensitive hybrid-flow battery. ACS Energy Lett 2017;2:411-6. DOI
84. Li Y, Geysens P, Zhang X, et al. Cerium-containing complexes for low-cost, non-aqueous redox flow batteries (RFBs). J Power
Sources 2020;450:227634. DOI
85. Zhang J, Jiang G, Xu P, et al. An all-aqueous redox flow battery with unprecedented energy density. Energy Environ Sci
2018;11:2010-5. DOI
86. Xie C, Liu Y, Lu W, Zhang H, Li X. Highly stable zinc-iodine single flow batteries with super high energy density for stationary
energy storage. Energy Environ Sci 2019;12:1834-9. DOI
87. Khor A, Leung P, Mohamed M, et al. Review of zinc-based hybrid flow batteries: from fundamentals to applications. Mater Today
Energy 2018;8:80-108. DOI
88. Wang YL, Sun QL, Zhao QQ, Cao JS, Ye SH. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-
carbon composite as cathode. Energy Environ Sci 2011;4:3947. DOI
89. Li B, Liu J, Nie Z, et al. Metal-organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide
redox flow batteries. Nano Lett 2016;16:4335-40. DOI PubMed
90. Weng G, Li Z, Cong G, Zhou Y, Lu Y. Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and
lithium/polyiodide redox flow batteries. Energy Environ Sci 2017;10:735-41. DOI
91. Xie C, Zhang H, Xu W, Wang W, Li X. A long cycle life, self-healing zinc-iodine flow battery with high power density. Angew
Chem Int Ed 2018;130:11341-6. DOI PubMed
92. Yuan Z, Yin Y, Xie C, Zhang H, Yao Y, Li X. Advanced materials for Zinc-based flow battery: development and challenge. Adv
Mater 2019;31:e1902025. DOI PubMed
93. Ma L, Zhao Y, Ji X, et al. A usage scenario independent “air chargeable” flexible zinc ion energy storage device. Adv Energy Mater
2019;9:1900509. DOI
94. Fu J, Lee DU, Hassan FM, et al. Flexible high-energy polymer-electrolyte-based rechargeable zinc-air batteries. Adv Mater
2015;27:5617-22. DOI PubMed
95. Fu J, Hassan FM, Li J, et al. Flexible rechargeable zinc-air batteries through morphological emulation of human hair array. Adv Mater
2016;28:6421-8. DOI PubMed
96. Jiang Y, Deng Y, Liang R, et al. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy
flexible Zn-air batteries. Adv Energy Mater 2019;9:1900911. DOI
97. Zhang J, Fu J, Song X, et al. Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc-air
batteries. Adv Energy Mater 2016;6:1600476. DOI
98. Fu J, Zhang J, Song X, et al. A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc-air batteries. Energy
Environ Sci 2016;9:663-70. DOI
99. Wang X, Wang F, Wang L, et al. An aqueous rechargeable Zn//Co O battery with high energy density and good cycling behavior.
3 4
Adv Mater 2016;28:4904-11. DOI
100. Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 2016;1:
16039. DOI