Page 139 - Read Online
P. 139

Xiao et al. Energy Mater 2023;3:300007  https://dx.doi.org/10.20517/energymater.2022.84  Page 13 of 13

                    Power Sources 2017;341:36-45.  DOI
               80.       Gong K, Ma X, Conforti KM, et al. A zinc-iron redox-flow battery under $100 per kW h of system capital cost. Energy Environ Sci
                    2015;8:2941-5.  DOI
               81.       Li B, Nie Z, ijayakumar M, et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat
                    Commun 2015;6:6303.  DOI
               82.       Wang C, Lai Q, Feng K, Xu P, Li X, Zhang H. From zeolite-type metal organic framework to porous nano-sheet carbon: high activity
                    positive electrode material for bromine-based flow batteries. Nano Energy 2018;44:240-7.  DOI
               83.       Winsberg J, Stolze C, Schwenke A, Muench S, Hager MD, Schubert US. Aqueous 2,2,6,6-tetramethylpiperidine-N-oxyl catholytes
                    for a high-capacity and high current density oxygen-insensitive hybrid-flow battery. ACS Energy Lett 2017;2:411-6.  DOI
               84.       Li Y, Geysens P, Zhang X, et al. Cerium-containing complexes for low-cost, non-aqueous redox flow batteries (RFBs). J Power
                    Sources 2020;450:227634.  DOI
               85.       Zhang J, Jiang G, Xu P, et al. An all-aqueous redox flow battery with unprecedented energy density. Energy Environ Sci
                    2018;11:2010-5.  DOI
               86.       Xie C, Liu Y, Lu W, Zhang H, Li X. Highly stable zinc-iodine single flow batteries with super high energy density for stationary
                    energy storage. Energy Environ Sci 2019;12:1834-9.  DOI
               87.       Khor A, Leung P, Mohamed M, et al. Review of zinc-based hybrid flow batteries: from fundamentals to applications. Mater Today
                    Energy 2018;8:80-108.  DOI
               88.       Wang YL, Sun QL, Zhao QQ, Cao JS, Ye SH. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-
                    carbon composite as cathode. Energy Environ Sci 2011;4:3947.  DOI
               89.       Li B, Liu J, Nie Z, et al. Metal-organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide
                    redox flow batteries. Nano Lett 2016;16:4335-40.  DOI  PubMed
               90.       Weng  G,  Li  Z,  Cong  G,  Zhou  Y,  Lu  Y.  Unlocking  the  capacity  of  iodide  for  high-energy-density  zinc/polyiodide  and
                    lithium/polyiodide redox flow batteries. Energy Environ Sci 2017;10:735-41.  DOI
               91.       Xie C, Zhang H, Xu W, Wang W, Li X. A long cycle life, self-healing zinc-iodine flow battery with high power density. Angew
                    Chem Int Ed 2018;130:11341-6.  DOI  PubMed
               92.       Yuan Z, Yin Y, Xie C, Zhang H, Yao Y, Li X. Advanced materials for Zinc-based flow battery: development and challenge. Adv
                    Mater 2019;31:e1902025.  DOI  PubMed
               93.       Ma L, Zhao Y, Ji X, et al. A usage scenario independent “air chargeable” flexible zinc ion energy storage device. Adv Energy Mater
                    2019;9:1900509.  DOI
               94.       Fu J, Lee DU, Hassan FM, et al. Flexible high-energy polymer-electrolyte-based rechargeable zinc-air batteries. Adv Mater
                    2015;27:5617-22.  DOI  PubMed
               95.       Fu J, Hassan FM, Li J, et al. Flexible rechargeable zinc-air batteries through morphological emulation of human hair array. Adv Mater
                    2016;28:6421-8.  DOI  PubMed
               96.       Jiang Y, Deng Y, Liang R, et al. Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy
                    flexible Zn-air batteries. Adv Energy Mater 2019;9:1900911.  DOI
               97.       Zhang J, Fu J, Song X, et al. Laminated cross-linked nanocellulose/graphene oxide electrolyte for flexible rechargeable zinc-air
                    batteries. Adv Energy Mater 2016;6:1600476.  DOI
               98.       Fu J, Zhang J, Song X, et al. A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc-air batteries. Energy
                    Environ Sci 2016;9:663-70.  DOI
               99.       Wang X, Wang F, Wang L, et al. An aqueous rechargeable Zn//Co O  battery with high energy density and good cycling behavior.
                                                                3  4
                    Adv Mater 2016;28:4904-11.  DOI
               100.      Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 2016;1:
                    16039. DOI
   134   135   136   137   138   139   140   141   142   143   144