Page 137 - Read Online
P. 137
Xiao et al. Energy Mater 2023;3:300007 https://dx.doi.org/10.20517/energymater.2022.84 Page 11 of 13
18. Li Y, Fu J, Zhong C, et al. Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater 2019;9:1802605. DOI
19. Liu Y, Li L, Ji X, Cheng S. Scientific challenges and improvement strategies of zn-based anodes for aqueous Zn-ion batteries. Chem
Rec 2022;22:e202200114. DOI PubMed
20. Wu M, Zhang G, Yang H, et al. Aqueous Zn-based rechargeable batteries: recent progress and future perspectives. InfoMat 2022;4.
DOI
21. Liu Y, Lu X, Lai F, et al. Rechargeable aqueous Zn-based energy storage devices. Joule 2021;5:2845-903. DOI
22. Hao J, Li X, Zeng X, Li D, Mao J, Guo Z. Deeply understanding the Zn anode behaviour and corresponding improvement strategies
in different aqueous Zn-based batteries. Energy Environ Sci 2020;13:3917-49. DOI
23. Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020;4:771-99. DOI
24. Jo YN, Prasanna K, Kang SH, et al. The effects of mechanical alloying on the self-discharge and corrosion behavior in Zn-air
batteries. J Ind Eng Chem 2017;53:247-52. DOI
25. Lee S, Kim Y, Eom S, Choi N, Kim K, Cho S. Improvement in self-discharge of Zn anode by applying surface modification for Zn-
air batteries with high energy density. J Power Sources 2013;227:177-84. DOI
26. Li Z, Wu L, Dong S, et al. Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries. Adv Function Mat
2021;31. DOI
27. Liang M, Zhou H, Huang Q, Hu S, Li W. Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of
zinc anode in alkaline batteries. J Appl Electrochem 2011;41:991-7. DOI
28. Higashi S, Lee SW, Lee JS, Takechi K, Cui Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating
configuration. Nat Commun 2016;7:11801. DOI PubMed PMC
29. Yu Z, Wang H, Kong X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal
batteries. Nat Energy 2020;5:526-33. DOI
30. Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater 2018;17:543-9. DOI PubMed
31. Wan F, Niu Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed 2019;131:16508-17. DOI
PubMed
2+
32. Zhang D, Cao J, Zhang X, et al. Inhibition of manganese dissolution in Mn O cathode with controllable Ni incorporation for high-
3
2
performance zinc ion battery. Adv Funct Mater 2021;31:2009412. DOI
33. Zhu C, Fang G, Liang S, et al. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery.
Energy Stor Mater 2020;24:394-401. DOI
34. Tamilselvan M, Madhukar Sreekanth TV, Yoo K, Kim J. Self-doped 2D-V O nanoflakes - a high electrochemical performance
2 5
cathode in rechargeable zinc ion batteries. Ceram Int 2021;47:29832-9. DOI
35. Xie X, Fang G, Xu W, et al. In situ defect induction in close-packed lattice plane for the efficient zinc ion storage. Small
2021;17:e2101944. DOI PubMed
36. Zhang H, Fang Y, Yang F, Liu X, Lu X. Aromatic organic molecular crystal with enhanced π-π stacking interaction for ultrafast Zn-
ion storage. Energy Environ Sci 2020;13:2515-23. DOI
37. Yang W, Yang W, Dong L, Shao G, Wang G, Peng X. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-
dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy 2021;80:105563. DOI
38. Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn O cathode in Zn(CF SO ) electrolyte for rechargeable aqueous Zn-
2 4 3 3 2
ion battery. J Am Chem Soc 2016;138:12894-901. DOI
39. Cai W, Yao YX, Zhu GL, et al. A review on energy chemistry of fast-charging anodes. Chem Soc Rev 2020;49:3806-33. DOI
PubMed
40. Hu P, Wang T, Zhao J, et al. Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni S nanosheets. ACS Appl Mater
3 2
Interfaces 2015;7:26396-9. DOI PubMed
41. Selvakumaran D, Pan A, Liang S, Cao G. A review on recent developments and challenges of cathode materials for rechargeable
aqueous Zn-ion batteries. J Mater Chem A 2019;7:18209-36. DOI
42. Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for
an aqueous zinc-ion battery. Nat Commun 2018;9:2906. DOI PubMed PMC
43. Rodríguez-Pérez IA, Yuan Y, Bommier C, et al. Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon
Mg-ion insertion. J Am Chem Soc 2017;139:13031-7. DOI PubMed
44. Pan W, Wang Y, Zhao X, et al. High-performance aqueous Na-Zn hybrid ion battery boosted by “water-in-gel” electrolyte. Adv Funct
Mater 2021;31:2008783. DOI
45. Suo L, Borodin O, Wang Y, et al. “Water-in-Salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv
Energy Mater 2017;7:1701189. DOI
46. Shi P, Zheng H, Liang X, et al. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries.
Chem Commun 2018;54:4453-6. DOI PubMed
47. Yamada Y, Yamada A. Superconcentrated electrolytes to create new interfacial chemistry in non-aqueous and aqueous rechargeable
batteries. Chem Lett 2017;46:1056-64. DOI
48. Zhao J, Li Y, Peng X, et al. High-voltage Zn/LiMn Fe PO aqueous rechargeable battery by virtue of “water-in-salt” electrolyte.
0.8
0.2
4
Electrochem Commun 2016;69:6-10. DOI
49. Chen S, Lan R, Humphreys J, Tao S. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO battery. Energy Stor
2