Page 137 - Read Online
P. 137

Xiao et al. Energy Mater 2023;3:300007  https://dx.doi.org/10.20517/energymater.2022.84  Page 11 of 13

               18.       Li Y, Fu J, Zhong C, et al. Recent advances in flexible zinc-based rechargeable batteries. Adv Energy Mater 2019;9:1802605.  DOI
               19.       Liu Y, Li L, Ji X, Cheng S. Scientific challenges and improvement strategies of zn-based anodes for aqueous Zn-ion batteries. Chem
                    Rec 2022;22:e202200114.  DOI  PubMed
               20.       Wu M, Zhang G, Yang H, et al. Aqueous Zn-based rechargeable batteries: recent progress and future perspectives. InfoMat 2022;4.
                    DOI
               21.       Liu Y, Lu X, Lai F, et al. Rechargeable aqueous Zn-based energy storage devices. Joule 2021;5:2845-903.  DOI
               22.       Hao J, Li X, Zeng X, Li D, Mao J, Guo Z. Deeply understanding the Zn anode behaviour and corresponding improvement strategies
                    in different aqueous Zn-based batteries. Energy Environ Sci 2020;13:3917-49.  DOI
               23.       Blanc LE, Kundu D, Nazar LF. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020;4:771-99.  DOI
               24.       Jo YN, Prasanna K, Kang SH, et al. The effects of mechanical alloying on the self-discharge and corrosion behavior in Zn-air
                    batteries. J Ind Eng Chem 2017;53:247-52.  DOI
               25.       Lee S, Kim Y, Eom S, Choi N, Kim K, Cho S. Improvement in self-discharge of Zn anode by applying surface modification for Zn-
                    air batteries with high energy density. J Power Sources 2013;227:177-84.  DOI
               26.       Li Z, Wu L, Dong S, et al. Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries. Adv Function Mat
                    2021;31.  DOI
               27.       Liang M, Zhou H, Huang Q, Hu S, Li W. Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of
                    zinc anode in alkaline batteries. J Appl Electrochem 2011;41:991-7.  DOI
               28.       Higashi S, Lee SW, Lee JS, Takechi K, Cui Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating
                    configuration. Nat Commun 2016;7:11801.  DOI  PubMed  PMC
               29.       Yu Z, Wang H, Kong X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal
                    batteries. Nat Energy 2020;5:526-33.  DOI
               30.       Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater 2018;17:543-9.  DOI  PubMed
               31.       Wan F, Niu Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed 2019;131:16508-17.  DOI
                    PubMed
                                                                                          2+
               32.       Zhang D, Cao J, Zhang X, et al. Inhibition of manganese dissolution in Mn O  cathode with controllable Ni  incorporation for high-
                                                                      3
                                                                     2
                    performance zinc ion battery. Adv Funct Mater 2021;31:2009412.  DOI
               33.       Zhu C, Fang G, Liang S, et al. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery.
                    Energy Stor Mater 2020;24:394-401.  DOI
               34.       Tamilselvan M, Madhukar Sreekanth TV, Yoo K, Kim J. Self-doped 2D-V O  nanoflakes - a high electrochemical performance
                                                                      2  5
                    cathode in rechargeable zinc ion batteries. Ceram Int 2021;47:29832-9.  DOI
               35.       Xie X, Fang G, Xu W, et al. In situ defect induction in close-packed lattice plane for the efficient zinc ion storage. Small
                    2021;17:e2101944.  DOI  PubMed
               36.       Zhang H, Fang Y, Yang F, Liu X, Lu X. Aromatic organic molecular crystal with enhanced π-π stacking interaction for ultrafast Zn-
                    ion storage. Energy Environ Sci 2020;13:2515-23.  DOI
               37.       Yang W, Yang W, Dong L, Shao G, Wang G, Peng X. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-
                    dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy 2021;80:105563.  DOI
               38.       Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn O  cathode in Zn(CF SO )  electrolyte for rechargeable aqueous Zn-
                                                             2  4          3  3 2
                    ion battery. J Am Chem Soc 2016;138:12894-901.  DOI
               39.       Cai W, Yao YX, Zhu GL, et al. A review on energy chemistry of fast-charging anodes. Chem Soc Rev 2020;49:3806-33.  DOI
                    PubMed
               40.       Hu P, Wang T, Zhao J, et al. Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni S  nanosheets. ACS Appl Mater
                                                                                    3 2
                    Interfaces 2015;7:26396-9.  DOI  PubMed
               41.       Selvakumaran D, Pan A, Liang S, Cao G. A review on recent developments and challenges of cathode materials for rechargeable
                    aqueous Zn-ion batteries. J Mater Chem A 2019;7:18209-36.  DOI
               42.       Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for
                    an aqueous zinc-ion battery. Nat Commun 2018;9:2906.  DOI  PubMed  PMC
               43.       Rodríguez-Pérez IA, Yuan Y, Bommier C, et al. Mg-ion battery electrode: an organic solid’s herringbone structure squeezed upon
                    Mg-ion insertion. J Am Chem Soc 2017;139:13031-7.  DOI  PubMed
               44.       Pan W, Wang Y, Zhao X, et al. High-performance aqueous Na-Zn hybrid ion battery boosted by “water-in-gel” electrolyte. Adv Funct
                    Mater 2021;31:2008783.  DOI
               45.       Suo L, Borodin O, Wang Y, et al. “Water-in-Salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv
                    Energy Mater 2017;7:1701189.  DOI
               46.       Shi P, Zheng H, Liang X, et al. A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries.
                    Chem Commun 2018;54:4453-6.  DOI  PubMed
               47.       Yamada Y, Yamada A. Superconcentrated electrolytes to create new interfacial chemistry in non-aqueous and aqueous rechargeable
                    batteries. Chem Lett 2017;46:1056-64.  DOI
               48.       Zhao J, Li Y, Peng X, et al. High-voltage Zn/LiMn Fe PO  aqueous rechargeable battery by virtue of “water-in-salt” electrolyte.
                                                      0.8
                                                        0.2
                                                            4
                    Electrochem Commun 2016;69:6-10.  DOI
               49.       Chen S, Lan R, Humphreys J, Tao S. Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO  battery. Energy Stor
                                                                                            2
   132   133   134   135   136   137   138   139   140   141   142