Page 138 - Read Online
P. 138

Page 12 of 13             Xiao et al. Energy Mater 2023;3:300007  https://dx.doi.org/10.20517/energymater.2022.84

                    Mater 2020;28:205-15.  DOI
               50.       Zhang L, Rodríguez-pérez IA, Jiang H, et al. ZnCl  “Water-in-Salt” electrolyte transforms the performance of vanadium oxide as a
                                                     2
                    Zn battery cathode. Adv Funct Mater 2019;29:1902653.  DOI
               51.       Sha M, Dong H, Luo F, Tang Z, Zhu G, Wu G. Dilute or concentrated electrolyte solutions? J Phys Chem Lett 2015;6:3713-20.  DOI
                    PubMed
               52.       Yu L, Chen S, Lee H, et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate
                    additive for stable lithium metal batteries. ACS Energy Lett 2018;3:2059-67.  DOI
               53.       Chen S, Zheng J, Mei D, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater
                    2018;30:1706102.  DOI  PubMed
               54.       Ren X, Chen S, Lee H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem
                    2018;4:1877-92.  DOI
               55.       Cao R, Lee J, Liu M, Cho J. Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 2012;2:816-29.  DOI
               56.       Logeshwaran N, Ramakrishnan S, Chandrasekaran SS, et al. An efficient and durable trifunctional electrocatalyst for zinc-air
                    batteries driven overall water splitting. Appl Catal B Environ 2021;297:120405.  DOI
               57.       Eckert M, Peters W, Drillet JF. Fast Microwave-assisted hydrothermal synthesis of pure layered delta-MnO  for multivalent ion
                                                                                            2
                    intercalation. Materials 2018;11:2399.  DOI  PubMed  PMC
               58.       Ramakrishnan S, Velusamy DB, Sengodan S, et al. Rational design of multifunctional electrocatalyst: An approach towards efficient
                    overall water splitting and rechargeable flexible solid-state zinc-air battery. Appl Catal B Environ 2022;300:120752.  DOI
               59.       Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z. Electrically rechargeable zinc-air batteries: progress, challenges, and
                    perspectives. Adv Mater 2017;29:1604685.  DOI  PubMed
               60.       Cheng F, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 2012;41:2172-92.
                    DOI  PubMed
               61.       Lee J, Tai Kim S, Cao R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 2011;1:34-50.
                    DOI
               62.       Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Hierarchically porous carbons with optimized nitrogen doping as highly active
                    electrocatalysts for oxygen reduction. Nat Commun 2014;5:4973.  DOI  PubMed
               63.       Tang C, Wang HF, Zhang Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. ACC Chem Res
                    2018;51:881-9.  DOI  PubMed
               64.       Guo S, Zhang S, Su D, Sun S. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis
                    for oxygen reduction reaction. J Am Chem Soc 2013;135:13879-84.  DOI  PubMed
               65.       Chung DY, Jun SW, Yoon G, et al. Highly durable and active ptfe nanocatalyst for electrochemical oxygen reduction reaction. J Am
                    Chem Soc 2015;137:15478-85.  DOI  PubMed
               66.       Bu L, Guo S, Zhang X, et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat
                    Commun 2016;7:11850.  DOI  PubMed  PMC
               67.       Xu N, Nie Q, Wei Y, et al. Bi-functional composite electrocatalysts consisting of nanoscale (La, Ca) oxides and carbon nanotubes for
                    long-term zinc-air fuel cells and rechargeable batteries. Sustain Energy Fuels 2018;2:91-5.  DOI
               68.       Wang Y, Fu J, Zhang Y, et al. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable
                    zinc-air batteries. Nanoscale 2017;9:15865-72.  DOI  PubMed
               69.       Niu W, Li Z, Marcus K, et al. Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air
                    batteries. Adv Energy Mater 2018;8:1701642.  DOI
               70.       Hu S, Han T, Lin C, et al. Enhanced electrocatalysis via 3D graphene aerogel engineered with a silver nanowire network for
                    ultrahigh-rate zinc-air batteries. Adv Funct Mater 2017;27:1700041.  DOI
               71.       Li B, Geng D, Lee XS, et al. Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen
                    electrocatalysts at low cost for rechargeable Zn-air batteries. Chem Commun 2015;51:8841-4.  DOI  PubMed
               72.       Lu X, Yim WL, Suryanto BH, Zhao C. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J Am
                    Chem Soc 2015;137:2901-7.  DOI  PubMed
               73.       Tang C, Wang B, Wang HF, Zhang Q. Defect engineering toward atomic Co-N -C in hierarchical graphene for rechargeable flexible
                                                                       x
                    solid Zn-air batteries. Adv Mater 2017;29:1703185.  DOI
               74.       Lee DU, Choi JY, Feng K, Park HW, Chen Z. Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air
                    batteries. Adv Energy Mater 2014;4:1301389.  DOI
               75.       Liu X, Park M, Kim MG, Gupta S, Wu G, Cho J. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts
                    for rechargeable zinc-air batteries. Angew Chem Int Ed 2015;54:9654-8.  DOI  PubMed
               76.       Xu K, Chen P, Li X, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J Am Chem Soc
                    2015;137:4119-25.  DOI  PubMed
               77.       Lee  DU,  Xu  P,  Cano  ZP,  Kashkooli  AG,  Park  MG,  Chen  Z.  Recent  progress  and  perspectives  on  bi-functional  oxygen
                    electrocatalysts for advanced rechargeable metal-air batteries. J Mater Chem A 2016;4:7107-34.  DOI
               78.       Winsberg J, Janoschka T, Morgenstern S, et al. Poly(TEMPO)/Zinc hybrid-flow battery: a novel, “green”, high voltage, and safe
                    energy storage system. Adv Mater 2016;28:2238-43.  DOI  PubMed
               79.       Leung P, Martin T, Shah A, Mohamed M, Anderson M, Palma J. Membrane-less hybrid flow battery based on low-cost elements. J
   133   134   135   136   137   138   139   140   141   142   143