Page 138 - Read Online
P. 138
Page 12 of 13 Xiao et al. Energy Mater 2023;3:300007 https://dx.doi.org/10.20517/energymater.2022.84
Mater 2020;28:205-15. DOI
50. Zhang L, Rodríguez-pérez IA, Jiang H, et al. ZnCl “Water-in-Salt” electrolyte transforms the performance of vanadium oxide as a
2
Zn battery cathode. Adv Funct Mater 2019;29:1902653. DOI
51. Sha M, Dong H, Luo F, Tang Z, Zhu G, Wu G. Dilute or concentrated electrolyte solutions? J Phys Chem Lett 2015;6:3713-20. DOI
PubMed
52. Yu L, Chen S, Lee H, et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate
additive for stable lithium metal batteries. ACS Energy Lett 2018;3:2059-67. DOI
53. Chen S, Zheng J, Mei D, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv Mater
2018;30:1706102. DOI PubMed
54. Ren X, Chen S, Lee H, et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem
2018;4:1877-92. DOI
55. Cao R, Lee J, Liu M, Cho J. Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 2012;2:816-29. DOI
56. Logeshwaran N, Ramakrishnan S, Chandrasekaran SS, et al. An efficient and durable trifunctional electrocatalyst for zinc-air
batteries driven overall water splitting. Appl Catal B Environ 2021;297:120405. DOI
57. Eckert M, Peters W, Drillet JF. Fast Microwave-assisted hydrothermal synthesis of pure layered delta-MnO for multivalent ion
2
intercalation. Materials 2018;11:2399. DOI PubMed PMC
58. Ramakrishnan S, Velusamy DB, Sengodan S, et al. Rational design of multifunctional electrocatalyst: An approach towards efficient
overall water splitting and rechargeable flexible solid-state zinc-air battery. Appl Catal B Environ 2022;300:120752. DOI
59. Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z. Electrically rechargeable zinc-air batteries: progress, challenges, and
perspectives. Adv Mater 2017;29:1604685. DOI PubMed
60. Cheng F, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 2012;41:2172-92.
DOI PubMed
61. Lee J, Tai Kim S, Cao R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 2011;1:34-50.
DOI
62. Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Hierarchically porous carbons with optimized nitrogen doping as highly active
electrocatalysts for oxygen reduction. Nat Commun 2014;5:4973. DOI PubMed
63. Tang C, Wang HF, Zhang Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. ACC Chem Res
2018;51:881-9. DOI PubMed
64. Guo S, Zhang S, Su D, Sun S. Seed-mediated synthesis of core/shell FePtM/FePt (M = Pd, Au) nanowires and their electrocatalysis
for oxygen reduction reaction. J Am Chem Soc 2013;135:13879-84. DOI PubMed
65. Chung DY, Jun SW, Yoon G, et al. Highly durable and active ptfe nanocatalyst for electrochemical oxygen reduction reaction. J Am
Chem Soc 2015;137:15478-85. DOI PubMed
66. Bu L, Guo S, Zhang X, et al. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat
Commun 2016;7:11850. DOI PubMed PMC
67. Xu N, Nie Q, Wei Y, et al. Bi-functional composite electrocatalysts consisting of nanoscale (La, Ca) oxides and carbon nanotubes for
long-term zinc-air fuel cells and rechargeable batteries. Sustain Energy Fuels 2018;2:91-5. DOI
68. Wang Y, Fu J, Zhang Y, et al. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable
zinc-air batteries. Nanoscale 2017;9:15865-72. DOI PubMed
69. Niu W, Li Z, Marcus K, et al. Surface-modified porous carbon nitride composites as highly efficient electrocatalyst for Zn-air
batteries. Adv Energy Mater 2018;8:1701642. DOI
70. Hu S, Han T, Lin C, et al. Enhanced electrocatalysis via 3D graphene aerogel engineered with a silver nanowire network for
ultrahigh-rate zinc-air batteries. Adv Funct Mater 2017;27:1700041. DOI
71. Li B, Geng D, Lee XS, et al. Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen
electrocatalysts at low cost for rechargeable Zn-air batteries. Chem Commun 2015;51:8841-4. DOI PubMed
72. Lu X, Yim WL, Suryanto BH, Zhao C. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J Am
Chem Soc 2015;137:2901-7. DOI PubMed
73. Tang C, Wang B, Wang HF, Zhang Q. Defect engineering toward atomic Co-N -C in hierarchical graphene for rechargeable flexible
x
solid Zn-air batteries. Adv Mater 2017;29:1703185. DOI
74. Lee DU, Choi JY, Feng K, Park HW, Chen Z. Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air
batteries. Adv Energy Mater 2014;4:1301389. DOI
75. Liu X, Park M, Kim MG, Gupta S, Wu G, Cho J. Integrating NiCo alloys with their oxides as efficient bifunctional cathode catalysts
for rechargeable zinc-air batteries. Angew Chem Int Ed 2015;54:9654-8. DOI PubMed
76. Xu K, Chen P, Li X, et al. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J Am Chem Soc
2015;137:4119-25. DOI PubMed
77. Lee DU, Xu P, Cano ZP, Kashkooli AG, Park MG, Chen Z. Recent progress and perspectives on bi-functional oxygen
electrocatalysts for advanced rechargeable metal-air batteries. J Mater Chem A 2016;4:7107-34. DOI
78. Winsberg J, Janoschka T, Morgenstern S, et al. Poly(TEMPO)/Zinc hybrid-flow battery: a novel, “green”, high voltage, and safe
energy storage system. Adv Mater 2016;28:2238-43. DOI PubMed
79. Leung P, Martin T, Shah A, Mohamed M, Anderson M, Palma J. Membrane-less hybrid flow battery based on low-cost elements. J