Page 125 - Read Online
P. 125

Liang et al. Energy Mater 2023;3:300006  https://dx.doi.org/10.20517/energymater.2022.63  Page 13 of 14

               Conflicts of interest
               All authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Jiang L, Wang Z, Pan P, et al. Excimer ultraviolet-irradiated graphene separator for suppressing polysulfide shuttling in Li-S batteries.
                   J Alloys Compd 2022;903:163932.  DOI
               2.       Zhang L, Chen Y. Electrolyte solvation structure as a stabilization mechanism for electrodes. Energy Mater 2022;1:100004.  DOI
               3.       Yu Z, Shao Y, Ma L, et al. Revealing the sulfur redox paths in a Li-S battery by an In situ hyphenated technique of electrochemistry
                   and mass spectrometry. Adv Mater 2022;34:e2106618.  DOI  PubMed
               4.       Huang CJ, Thirumalraj B, Tao HC, et al. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal
                   batteries. Nat Commun 2021;12:1452.  DOI  PubMed  PMC
               5.       Zheng S, Zhu X, Ouyang Y, et al. Metal-organic framework decorated polymer nanofiber composite separator for physiochemically
                   shielding polysulfides in stable lithium-sulfur batteries. Energy Fuels 2021;35:19154-63.  DOI
               6.       Chadha U, Bhardwaj P, Padmanaban S, et al. Review - contemporary progresses in carbon-based electrode material in Li-S batteries. J
                   Electrochem Soc 2022;169:020530.  DOI
               7.       Suzanowicz AM, Lee Y, Lin H, Marques OJJ, Segre CU, Mandal BK. A new graphitic nitride and reduced graphene oxide-based
                   sulfur cathode for high-capacity lithium-sulfur cells. Energies 2022;15:702.  DOI
               8.       Zhong X, Wang D, Sheng J, et al. Freestanding and sandwich mxene-based cathode with suppressed lithium polysulfides shuttle for
                   flexible lithium-sulfur batteries. Nano Lett 2022;22:1207-16.  DOI  PubMed
               9.       Wei Z, Wang R. Chemically etched CeO  nanorods with abundant surface defects as effective cathode additive for trapping lithium
                                              2-x
                   polysulfides in Li-S batteries. J Colloid Interf Sci 2022;615:527-42.  DOI
               10.      Chen X, Ji H, Chen W, et al. In situ protection of a sulfur cathode and a lithium anode via adopting a fluorinated electrolyte for stable
                   lithium-sulfur batteries. Sci China Mater 2021;64:2127-38.  DOI
               11.      Wang Q, Wang H, Wu J, Zhou M, Liu W, Zhou H. Advanced electrolyte design for stable lithium metal anode: from liquid to solid.
                   Nano Energy 2021;80:105516.  DOI
               12.      Paul PP, Mcshane EJ, Colclasure AM, et al. A review of existing and emerging methods for lithium detection and characterization in
                   Li-ion and Li-metal batteries. Adv Energy Mater 2021;11:2100372.  DOI
               13.      Balaish M, Gonzalez-rosillo JC, Kim KJ, Zhu Y, Hood ZD, Rupp JLM. Processing thin but robust electrolytes for solid-state batteries.
                   Nat Energy 2021;6:227-39.  DOI
               14.      Hu W, Liang X, Yang X, et al. Sulfophenylated poly (ether ether ketone ketone) nanofiber composite separator with excellent
                   electrochemical performance and dimensional thermal stability for lithium-ion battery via electrospinning. Macromol Mater Eng
                   2021;306:2100118.  DOI
               15.      Aslam MK, Jamil S, Hussain S, Xu M. Effects of catalysis and separator functionalization on high energy lithium sulfur batteries: a
                   complete review. Energy Environ Mater 2022;Online ahead of print.  DOI
               16.      Xiang H, Liu X, Deng N, Cheng B, Kang W. A novel EDOT/F co-doped PMIA nanofiber membrane as separator for high-
                   performance lithium-sulfur battery. Chem Asian J 2022;17:e202200669.  DOI  PubMed
               17.      Zhou C, He Q, Li Z, et al. A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur
                   batteries. Chem Eng J 2020;395:124979.  DOI
               18.      Zhao J, Yan G, Zhang X, et al. In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle
                   effect and higher ion transport for high-performance Li-S batteries. Chem Eng J 2022;442:136352.  DOI
               19.      Liang X, Wang L, Wang Y, Liu Y, Sun Y, Xiang H. Constructing multi-functional composite separator of PVDF-HFP/h-BN supported
                   Co-CNF membrane for lithium-sulfur batteries. Sustain Energy Fuels 2022;6:440-8.  DOI
               20.      Zhu L, Jiang H, Ran W, et al. Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance
                   lithium-sulfur batteries. Appl Surf Sci 2019;489:154-64.  DOI
               21.      Jing W, Zu J, Zou K, et al. Sandwich-like strontium fluoride graphene-modified separator inhibits polysulfide shuttling and lithium
                   dendrite growth in lithium-sulfur batteries. J Mater Chem A 2022;10:4833-44.  DOI
               22.      Han Y, Xu Y, Zhang S, Li T, Ramakrishna S, Liu Y. Progress of improving mechanical strength of electrospun nanofibrous
   120   121   122   123   124   125   126   127   128   129   130