Page 58 - Read Online
P. 58
Page 16 of 17 Sun et al. Chem Synth 2023;3:16 https://dx.doi.org/10.20517/cs.2022.45
33. Cen M, Ding Y, Wang J, et al. Cationic water-soluble pillar[5]arene-modified cu(2-x)se nanoparticles: supramolecular trap for atp and
application in targeted photothermal therapy in the NIR-II window. ACS Macro Lett 2020;9:1558-62. DOI PubMed
34. Yu Z, Chan WK, Zhang Y, Tan TTY. Near-infrared-II activated inorganic photothermal nanomedicines. Biomaterials
2021;269:120459. DOI PubMed
35. Chu N, Cong L, Yue J, Xu W, Xu S. Fluorescent imaging probe targeting mitochondria based on supramolecular host-guest assembly
and disassembly. ACS Omega 2022;7:34268-77. DOI PubMed PMC
36. Li H, Wei R, Yan GH, et al. Smart self-assembled nanosystem based on water-soluble pillararene and rare-earth-doped upconversion
nanoparticles for ph-responsive drug delivery. ACS Appl Mater Interfaces 2018;10:4910-20. DOI PubMed
37. Huang C, Zhang H, Hu Z, Zhang Y, Ji X. Enhancing mechanical performance of a polymer material by incorporating pillar[5]arene-
based host-guest interactions. Gels 2022;8:475. DOI PubMed PMC
38. Yoon HJ, Lee HS, Lim JY, Park JH. Liposomal indocyanine green for enhanced photothermal therapy. ACS Appl Mater Interfaces
2017;9:5683-91. DOI PubMed
39. Zhu S, Wang S, Liu C, Lyu M, Huang Q. Cu-hemin nanosheets and indocyanine green co-loaded hydrogel for photothermal therapy
and amplified photodynamic therapy. Front Oncol 2022;12:918416. DOI PubMed PMC
40. Sun R, Liu M, Xu Z, Song B, He Y, Wang H. Silicon-based nanoprobes cross the blood—brain barrier for photothermal therapy of
glioblastoma. Nano Res 2022;15:7392-401. DOI
41. Lin L, Liang X, Xu Y, Yang Y, Li X, Dai Z. Doxorubicin and indocyanine green loaded hybrid bicelles for fluorescence imaging
guided synergetic chemo/photothermal therapy. Bioconjug Chem 2017;28:2410-9. DOI PubMed
42. Ding Y, Wang C, Lu B, Yao Y. Enhancing the stability and photothermal conversion efficiency of ICG by pillar[5]arene-based host-
guest interaction. Front Chem 2021;9:775436. DOI PubMed PMC
43. Leng C, Zhang X, Xu F, et al. Engineering gold nanorod-copper sulfide heterostructures with enhanced photothermal conversion
efficiency and photostability. Small 2018;14:e1703077. DOI PubMed
44. Tang M, Zhang Z, Ding C, et al. Two birds with one stone: innovative ceria-loaded gold@platinum nanospheres for photothermal-
catalytic therapy of tumors. J Colloid Interface Sci 2022;627:299-307. DOI PubMed
45. Lin X, Ye S, Kong C, et al. Polymeric ligand-mediated regioselective bonding of plasmonic nanoplates and nanospheres. J Am Chem
Soc 2020;142:17282-6. DOI PubMed
46. Cheng Q, Yue L, Li J, et al. Supramolecular tropism driven aggregation of nanoparticles in situ for tumor-specific bioimaging and
photothermal therapy. Small 2021;17:e2101332. DOI PubMed
47. Gao C, Wang Q, Li J, et al. In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for
targeted therapy of melanoma. Sci Adv 2022;8:eabn1805. DOI PubMed PMC
48. Han R, Wu S, Yan Y, Chen W, Tang K. Construction of ferrocene modified and indocyanine green loaded multifunctional mesoporous
silica nanoparticle for simultaneous chemodynamic/photothermal/photodynamic therapy. Mater Today Commun 2021;26:101842.
DOI
49. Hu XY, Gao L, Mosel S, et al. From supramolecular vesicles to micelles: controllable construction of tumor-targeting nanocarriers
based on host-guest interaction between a pillar[5]arene-based prodrug and a RGD-sulfonate guest. Small 2018;14:e1803952. DOI
PubMed
50. Wang Y, Jin M, Chen Z, et al. Tumor microenvironment responsive supramolecular glyco-nanovesicles based on diselenium-bridged
pillar[5]arene dimer for targeted chemotherapy. Chem Commun (Camb) 2020;56:10642-5. DOI PubMed
51. Xie B, Zhao H, Shui M, et al. Spermine-responsive intracellular self-aggregation of gold nanocages for enhanced chemotherapy and
photothermal therapy of breast cancer. Small 2022;18:e2201971. DOI PubMed
52. Cui FH, Li Q, Gao LH, et al. Condensed osmaquinolines with NIR-II absorption synthesized by Aryl C-H annulation and
aromatization. Angew Chem Int Ed Engl 2022;61:e202211734. DOI PubMed
53. Tang B, Li WL, Chang Y, et al. A supramolecular radical dimer: high-efficiency NIR-II photothermal conversion and therapy. Angew
Chem Int Ed Engl 2019;58:15526-31. DOI PubMed
54. Chen X, Wang Z, Sun X, et al. Photothermal supramolecular vesicles coassembled from pillar[5]arene and aniline tetramer for tumor
eradication in NIR-I and NIR-II biowindows. Chem Eng J 2021;403:126423. DOI
55. Tang Z, Tian W, Long H, et al. Subcellular-targeted near-infrared-responsive nanomedicine with synergistic chemo-photothermal
therapy against multidrug resistant cancer. Mol Pharm 2022;19:4538-51. DOI PubMed
56. Zhong Z, Liu C, Xu Y, et al. γ-Fe(2) O(3) loading mitoxantrone and glucose oxidase for pH-responsive chemo/chemodynamic/
photothermal synergistic cancer therapy. Adv Healthc Mater 2022;11:e2102632. DOI
57. Bai S, Zhang Y, Li D, Shi X, Lin G, Liu G. Gain an advantage from both sides: Smart size-shrinkable drug delivery nanosystems for
high accumulation and deep penetration. Nano Today 2021;36:101038. DOI
58. Gu Z, Dong Y, Xu S, Wang L, Liu Z. Molecularly imprinted polymer-based smart prodrug delivery system for specific targeting,
prolonged retention, and tumor microenvironment-triggered release. Angew Chem Int Ed Engl 2021;60:2663-7. DOI PubMed PMC
59. Li HJ, Du JZ, Liu J, et al. Smart superstructures with ultrahigh ph-sensitivity for targeting acidic tumor microenvironment:
instantaneous size switching and improved tumor penetration. ACS Nano 2016;10:6753-61. DOI PubMed
60. Wang Z, Wang Y, Sun X, et al. Supramolecular core-shell nanoassemblies with tumor microenvironment-triggered size and structure
switch for improved photothermal therapy. Small 2022;18:e2200588. DOI PubMed
61. Li J, Cheng Q, Yue L, et al. Macrophage-hitchhiking supramolecular aggregates of CuS nanoparticles for enhanced tumor deposition