Page 58 - Read Online
P. 58

Page 16 of 17                         Sun et al. Chem Synth 2023;3:16  https://dx.doi.org/10.20517/cs.2022.45

               33.      Cen M, Ding Y, Wang J, et al. Cationic water-soluble pillar[5]arene-modified cu(2-x)se nanoparticles: supramolecular trap for atp and
                   application in targeted photothermal therapy in the NIR-II window. ACS Macro Lett 2020;9:1558-62.  DOI  PubMed
               34.      Yu  Z,  Chan  WK,  Zhang  Y,  Tan  TTY.  Near-infrared-II  activated  inorganic  photothermal  nanomedicines.  Biomaterials
                   2021;269:120459.  DOI  PubMed
               35.      Chu N, Cong L, Yue J, Xu W, Xu S. Fluorescent imaging probe targeting mitochondria based on supramolecular host-guest assembly
                   and disassembly. ACS Omega 2022;7:34268-77.  DOI  PubMed  PMC
               36.      Li H, Wei R, Yan GH, et al. Smart self-assembled nanosystem based on water-soluble pillararene and rare-earth-doped upconversion
                   nanoparticles for ph-responsive drug delivery. ACS Appl Mater Interfaces 2018;10:4910-20.  DOI  PubMed
               37.      Huang C, Zhang H, Hu Z, Zhang Y, Ji X. Enhancing mechanical performance of a polymer material by incorporating pillar[5]arene-
                   based host-guest interactions. Gels 2022;8:475.  DOI  PubMed  PMC
               38.      Yoon HJ, Lee HS, Lim JY, Park JH. Liposomal indocyanine green for enhanced photothermal therapy. ACS Appl Mater Interfaces
                   2017;9:5683-91.  DOI  PubMed
               39.      Zhu S, Wang S, Liu C, Lyu M, Huang Q. Cu-hemin nanosheets and indocyanine green co-loaded hydrogel for photothermal therapy
                   and amplified photodynamic therapy. Front Oncol 2022;12:918416.  DOI  PubMed  PMC
               40.      Sun R, Liu M, Xu Z, Song B, He Y, Wang H. Silicon-based nanoprobes cross the blood—brain barrier for photothermal therapy of
                   glioblastoma. Nano Res 2022;15:7392-401.  DOI
               41.      Lin L, Liang X, Xu Y, Yang Y, Li X, Dai Z. Doxorubicin and indocyanine green loaded hybrid bicelles for fluorescence imaging
                   guided synergetic chemo/photothermal therapy. Bioconjug Chem 2017;28:2410-9.  DOI  PubMed
               42.      Ding Y, Wang C, Lu B, Yao Y. Enhancing the stability and photothermal conversion efficiency of ICG by pillar[5]arene-based host-
                   guest interaction. Front Chem 2021;9:775436.  DOI  PubMed  PMC
               43.      Leng C, Zhang X, Xu F, et al. Engineering gold nanorod-copper sulfide heterostructures with enhanced photothermal conversion
                   efficiency and photostability. Small 2018;14:e1703077.  DOI  PubMed
               44.      Tang M, Zhang Z, Ding C, et al. Two birds with one stone: innovative ceria-loaded gold@platinum nanospheres for photothermal-
                   catalytic therapy of tumors. J Colloid Interface Sci 2022;627:299-307.  DOI  PubMed
               45.      Lin X, Ye S, Kong C, et al. Polymeric ligand-mediated regioselective bonding of plasmonic nanoplates and nanospheres. J Am Chem
                   Soc 2020;142:17282-6.  DOI  PubMed
               46.      Cheng Q, Yue L, Li J, et al. Supramolecular tropism driven aggregation of nanoparticles in situ for tumor-specific bioimaging and
                   photothermal therapy. Small 2021;17:e2101332.  DOI  PubMed
               47.      Gao C, Wang Q, Li J, et al. In vivo hitchhiking of immune cells by intracellular self-assembly of bacteria-mimetic nanomedicine for
                   targeted therapy of melanoma. Sci Adv 2022;8:eabn1805.  DOI  PubMed  PMC
               48.      Han R, Wu S, Yan Y, Chen W, Tang K. Construction of ferrocene modified and indocyanine green loaded multifunctional mesoporous
                   silica nanoparticle for simultaneous chemodynamic/photothermal/photodynamic therapy. Mater Today Commun 2021;26:101842.
                   DOI
               49.      Hu XY, Gao L, Mosel S, et al. From supramolecular vesicles to micelles: controllable construction of tumor-targeting nanocarriers
                   based on host-guest interaction between a pillar[5]arene-based prodrug and a RGD-sulfonate guest. Small 2018;14:e1803952.  DOI
                   PubMed
               50.      Wang Y, Jin M, Chen Z, et al. Tumor microenvironment responsive supramolecular glyco-nanovesicles based on diselenium-bridged
                   pillar[5]arene dimer for targeted chemotherapy. Chem Commun (Camb) 2020;56:10642-5.  DOI  PubMed
               51.      Xie B, Zhao H, Shui M, et al. Spermine-responsive intracellular self-aggregation of gold nanocages for enhanced chemotherapy and
                   photothermal therapy of breast cancer. Small 2022;18:e2201971.  DOI  PubMed
               52.      Cui FH, Li Q, Gao LH, et al. Condensed osmaquinolines with NIR-II absorption synthesized by Aryl C-H annulation and
                   aromatization. Angew Chem Int Ed Engl 2022;61:e202211734.  DOI  PubMed
               53.      Tang B, Li WL, Chang Y, et al. A supramolecular radical dimer: high-efficiency NIR-II photothermal conversion and therapy. Angew
                   Chem Int Ed Engl 2019;58:15526-31.  DOI  PubMed
               54.      Chen X, Wang Z, Sun X, et al. Photothermal supramolecular vesicles coassembled from pillar[5]arene and aniline tetramer for tumor
                   eradication in NIR-I and NIR-II biowindows. Chem Eng J 2021;403:126423.  DOI
               55.      Tang Z, Tian W, Long H, et al. Subcellular-targeted near-infrared-responsive nanomedicine with synergistic chemo-photothermal
                   therapy against multidrug resistant cancer. Mol Pharm 2022;19:4538-51.  DOI  PubMed
               56.      Zhong Z, Liu C, Xu Y, et al. γ-Fe(2) O(3) loading mitoxantrone and glucose oxidase for pH-responsive chemo/chemodynamic/
                   photothermal synergistic cancer therapy. Adv Healthc Mater 2022;11:e2102632.  DOI
               57.      Bai S, Zhang Y, Li D, Shi X, Lin G, Liu G. Gain an advantage from both sides: Smart size-shrinkable drug delivery nanosystems for
                   high accumulation and deep penetration. Nano Today 2021;36:101038.  DOI
               58.      Gu Z, Dong Y, Xu S, Wang L, Liu Z. Molecularly imprinted polymer-based smart prodrug delivery system for specific targeting,
                   prolonged retention, and tumor microenvironment-triggered release. Angew Chem Int Ed Engl 2021;60:2663-7.  DOI  PubMed  PMC
               59.      Li HJ, Du JZ, Liu J, et al. Smart superstructures with ultrahigh ph-sensitivity for targeting acidic tumor microenvironment:
                   instantaneous size switching and improved tumor penetration. ACS Nano 2016;10:6753-61.  DOI  PubMed
               60.      Wang Z, Wang Y, Sun X, et al. Supramolecular core-shell nanoassemblies with tumor microenvironment-triggered size and structure
                   switch for improved photothermal therapy. Small 2022;18:e2200588.  DOI  PubMed
               61.      Li J, Cheng Q, Yue L, et al. Macrophage-hitchhiking supramolecular aggregates of CuS nanoparticles for enhanced tumor deposition
   53   54   55   56   57   58   59   60   61   62   63