Page 128 - Read Online
P. 128

Page 22 of 25                       Zhong et al. Chem Synth 2023;3:27  https://dx.doi.org/10.20517/cs.2023.15

               40.       Zhang DY, Seelig G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 2011;3:103-13.  DOI  PubMed
               41.       Zhang DY, Turberfield AJ, Yurke B, Winfree E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science
                    2007;318:1121-5.  DOI  PubMed
               42.       Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex DNA nanostructures: From basic properties to applications. Angew Chem Int
                    Ed Engl 2017;56:15210-33.  DOI  PubMed
               43.       Gehring K, Leroy JL, Guéron M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature 1993;363:561-5.
                    DOI  PubMed
               44.       Simmel FC, Yurke B, Singh HR. Principles and applications of nucleic acid strand displacement reactions. Chem Rev 2019;119:6326-
                    69.  DOI
               45.       Walker MJ, Varani G. An allosteric switch primes sequence-specific DNA recognition. Cell 2019;176:4-6.  DOI  PubMed  PMC
               46.       Yang H, Kim K, Li S, Pacheco J, Chen XS. Structural basis of sequence-specific RNA recognition by the antiviral factor
                    APOBEC3G. Nat Commun 2022;13:7498.  DOI  PubMed  PMC
               47.       Osborne SE, Matsumura I, Ellington AD. Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem
                    Biol 1997;1:5-9.  DOI  PubMed
               48.       Breaker RR. Imaginary ribozymes. ACS Chem Biol 2020;15:2020-30.  DOI  PubMed  PMC
               49.       McConnell EM, Cozma I, Mou Q, Brennan JD, Lu Y, Li Y. Biosensing with DNAzymes. Chem Soc Rev 2021;50:8954-94.  DOI
                    PubMed  PMC
               50.       Seeman NC. DNA in a material world. Nature 2003;421:427-31.  DOI
               51.       Seeman NC, Sleiman HF. DNA nanotechnology. Nat Rev Mater 2018:3.  DOI
               52.       Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004;5:101-13.  DOI
                    PubMed
               53.       Bray D. Molecular networks: the top-down view. Science 2003;301:1864-5.  DOI  PubMed
               54.       Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat
                    Genet 2003;33 Suppl:245-54.  DOI  PubMed
               55.       Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet
                    2012;13:227-32.  DOI  PubMed  PMC
               56.       Emmert-Streib F, Glazko GV. Network biology: a direct approach to study biological function. Wiley Interdiscip Rev Syst Biol Med
                    2011;3:379-91.  DOI  PubMed
               57.       Purvis JE, Lahav G. Encoding and decoding cellular information through signaling dynamics. Cell 2013;152:945-56.  DOI  PubMed
                    PMC
               58.       Wang F, Lu CH, Willner I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing,
                    logic operations, and assembly of complex structures. Chem Rev 2014;114:2881-941.  DOI  PubMed
               59.       Lee TI, Rinaldi NJ, Robert F, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 2002;298:799-804.
                    DOI
               60.       Yue L, Wulf V, Wang S, Willner I. Evolution of nucleic-acid-based constitutional dynamic networks revealing adaptive and
                    emergent functions. Angew Chem Int Ed Engl 2019;58:12238-45.  DOI  PubMed
               61.       Yue L, Wang S, Willner I. Triggered reversible substitution of adaptive constitutional dynamic networks dictates programmed
                    catalytic functions. Sci Adv 2019;5:eaav5564.  DOI  PubMed  PMC
               62.       Zhou Z, Yue L, Wang S, Lehn JM, Willner I. DNA-based multiconstituent dynamic networks: hierarchical adaptive control over the
                    composition and cooperative catalytic functions of the systems. J Am Chem Soc 2018;140:12077-89.  DOI
               63.       Wang S, Yue L, Shpilt Z, et al. Controlling the catalytic functions of DNAzymes within constitutional dynamic networks of DNA
                    nanostructures. J Am Chem Soc 2017;139:9662-71.  DOI
               64.       Yue L, Wang S, Cecconello A, Lehn JM, Willner I. Orthogonal operation of constitutional dynamic networks consisting of DNA-
                    tweezer machines. ACS Nano 2017;11:12027-36.  DOI
               65.       Wang S, Yue L, Li ZY, Zhang J, Tian H, Willner I. Light-induced reversible reconfiguration of DNA-based constitutional dynamic
                    networks: Application to switchable catalysis. Angew Chem Int Ed Engl 2018;57:8105-9.  DOI
               66.       Yue L, Wang S, Willner I. Three-dimensional nucleic-acid-based constitutional dynamic networks: Enhancing diversity through
                    complexity of the systems. J Am Chem Soc 2019;141:16461-70.  DOI
               67.       Jiang Y, Hao N. Memorizing environmental signals through feedback and feedforward loops. Curr Opin Cell Biol 2021;69:96-102.
                    DOI  PubMed  PMC
               68.       Reeves GT. The engineering principles of combining a transcriptional incoherent feedforward loop with negative feedback. J Biol
                    Eng 2019;13:62.  DOI  PubMed  PMC
               69.       Patel A, Murray RM, Sen S. Assessment of robustness to temperature in a negative feedback loop and a feedforward loop. ACS Synth
                    Biol 2020;9:1581-90.  DOI
               70.       Gao Y, Chen Y, Shang J, et al. Enzyme-free autocatalysis-driven feedback DNA circuits for amplified aptasensing of living cells.
                    ACS Appl Mater Interfaces 2022;14:5080-9.  DOI
               71.       Shi K, Xie S, Tian R, et al. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics.
                    Sci Adv 2021:7.  DOI  PubMed  PMC
               72.       Novák B, Tyson JJ. Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 2008;9:981-91.  DOI  PubMed  PMC
   123   124   125   126   127   128   129   130   131   132   133