Page 38 - Read Online
P. 38
Dang et al. Chem Synth 2023;3:14 https://dx.doi.org/10.20517/cs.2022.33 Page 19 of 20
nontrivial topological properties. 2D Mater 2017;4:041003. DOI
62. Degtyareva O, Gregoryanz E, Somayazulu M, Mao H, Hemley RJ. Crystal structure of the superconducting phases of S and Se. Phys
Rev B 2005;71:214104. DOI
63. Cherin P, Unger P. The crystal structure of trigonal selenium. Inorg Chem 1967;6:1589-91. DOI
64. Anupama K, Paul T, Mary KAA. Solid-state fluorescent selenium quantum dots by a solvothermal assisted sol-gel route for curcumin
sensing. ACS Omega 2021;6:21525-33. DOI PubMed PMC
65. Ayyyzhy KO, Voronov VV, Gudkov SV, Rakov II, Simakin AV, Shafeev GA. Laser fabrication and fragmentation of selenium
nanoparticles in aqueous media. Phys Wave Phen 2019;27:113-8. DOI
66. Salazar-alvarez G, Muhammed M, Zagorodni AA. Novel flow injection synthesis of iron oxide nanoparticles with narrow size
distribution. Chem Eng Sci 2006;61:4625-33. DOI
67. Basak S, Chen D, Biswas P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law.
Chem Eng Sci 2007;62:1263-8. DOI
68. Gates B, Mayers B, Cattle B, Xia Y. Synthesis and characterization of uniform nanowires of trigonal selenium. Adv Funct Mater
2002;12:219. DOI
69. Chen YZ, You YT, Chen PJ, et al. Environmentally and mechanically stable selenium 1D/2D hybrid structures for broad-range
photoresponse from ultraviolet to infrared wavelengths. ACS Appl Mater Interfaces 2018;10:35477-86. DOI PubMed
70. Yaman M, Khudiyev T, Ozgur E, et al. Arrays of indefinitely long uniform nanowires and nanotubes. Nat Mater 2011;10:494-501.
DOI PubMed
71. Kasirga TS. Chemical vapor transport synthesis of a selenium-based two-dimensional material. Turk J Phys 2018:42. DOI
72. Filippo E, Manno D, Serra A. Characterization and growth mechanism of selenium microtubes synthesized by a vapor phase
deposition route. Crystal Growth & Design 2010;10:4890-7. DOI
73. Cheng M, Wu S, Zhu Z, Guo G. Large second-harmonic generation and linear electro-optic effect in trigonal selenium and tellurium.
Phys Rev B 2019:100. DOI
74. Jun SW, Jeon S, Kwon J, Lee J, Kim C, Hong SW. Full-color laser displays based on optical second-harmonic generation from the
thin film arrays of selenium nanowires. ACS Photonics 2022;9:368-77. DOI
75. Gumennik A, Stolyarov AM, Schell BR, et al. All-in-fiber chemical sensing. Adv Mater 2012;24:6005-9. DOI PubMed
76. Deng DS, Orf ND, Abouraddy AF, et al. In-fiber semiconductor filament arrays. Nano Lett 2008;8:4265-9. DOI PubMed
77. Yan W, Nguyen-dang T, Cayron C, et al. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Opt Mater
Express 2017;7:1388. DOI
78. Jiang X, Huang W, Wang R, et al. Photocarrier relaxation pathways in selenium quantum dots and their application in UV-Vis
photodetection. Nanoscale 2020;12:11232-41. DOI PubMed
79. Shin D, Zhu T, Huang X, Gunawan O, Blum V, Mitzi DB. Earth-abundant chalcogenide photovoltaic devices with over 5%
efficiency based on a Cu BaSn(S,Se) absorber. Adv Mater 2017;29:1606945. DOI PubMed
4
2
80. Jayswal NK, Rijal S, Subedi B, et al. Optical properties of thin film Sb Se and identification of its electronic losses in photovoltaic
2 3
devices. Solar Energy 2021;228:38-44. DOI
81. Hadar I, Song T, Ke W, Kanatzidis MG. Modern processing and insights on selenium solar cells: the world’s first photovoltaic
device. Adv Energy Mater 2019;9:1802766. DOI
82. Liu SC, Dai CM, Min Y, et al. An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics. Nat
Commun 2021;12:670. DOI PubMed PMC
83. Seo Y, Lee B, Jo Y, et al. Facile microwave-assisted synthesis of multiphase CuInSe nanoparticles and role of secondary cuse phase
2
on photovoltaic device performance. J Phys Chem C 2013;117:9529-36. DOI
84. Ulaganathan RK, Yadav K, Sankar R, Chou FC, Chen Y. Hybrid InSe nanosheets and MoS quantum dots for high-performance
2
broadband photodetectors and photovoltaic cells. Adv Mater Interfaces 2019;6:1801336. DOI
85. Wu M, Wang Y, Gao S, et al. Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-
integrated monitoring. Nano Energy 2019;56:693-9. DOI
86. Harkin JM, Dong A, Chesters G. Elevation of selenium levels in air by xerography. Nature 1976;259:204-5. DOI PubMed
87. Zhu B, Wu L, Wang Y, et al. A highly selective and ultrasensitive ratiometric far-red fluorescent probe for imaging endogenous
peroxynitrite in living cells. Sensor Actuat B-Chem 2018;259:797-802. DOI
88. Manjare ST, Kim Y, Churchill DG. Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically
important analytes. Acc Chem Res 2014;47:2985-98. DOI PubMed
89. Triet Ho LT, Mukherjee A, Vasileska D, et al. Modeling dark current conduction mechanisms and mitigation techniques in vertically
stacked amorphous selenium-based photodetectors. ACS Appl Electron Mater 2021;3:3538-46. DOI PubMed PMC
90. Liao ZM, Hou C, Liu LP, Yu DP. Temperature dependence of photoelectrical properties of single selenium nanowires. Nanoscale
Res Lett 2010;5:926-9. DOI PubMed PMC
91. Luo LB, Jie JS, Chen ZH, et al. Photoconductive properties of selenium nanowire photodetectors. J Nanosci Nanotechnol
2009;9:6292-8. DOI PubMed
92. Akiyama N. A sensor array based on trigonal-selenium nanowires for the detection of gas mixtures. Sensor Actuat B-Chem
2016;223:131-7. DOI
93. Yan W, Page A, Nguyen-Dang T, et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater