Page 38 - Read Online
P. 38

Dang et al. Chem Synth 2023;3:14  https://dx.doi.org/10.20517/cs.2022.33        Page 19 of 20

                    nontrivial topological properties. 2D Mater 2017;4:041003.  DOI
               62.       Degtyareva O, Gregoryanz E, Somayazulu M, Mao H, Hemley RJ. Crystal structure of the superconducting phases of S and Se. Phys
                    Rev B 2005;71:214104.  DOI
               63.       Cherin P, Unger P. The crystal structure of trigonal selenium. Inorg Chem 1967;6:1589-91.  DOI
               64.       Anupama K, Paul T, Mary KAA. Solid-state fluorescent selenium quantum dots by a solvothermal assisted sol-gel route for curcumin
                    sensing. ACS Omega 2021;6:21525-33.  DOI  PubMed  PMC
               65.       Ayyyzhy KO, Voronov VV, Gudkov SV, Rakov II, Simakin AV, Shafeev GA. Laser fabrication and fragmentation of selenium
                    nanoparticles in aqueous media. Phys Wave Phen 2019;27:113-8.  DOI
               66.       Salazar-alvarez G, Muhammed M, Zagorodni AA. Novel flow injection synthesis of iron oxide nanoparticles with narrow size
                    distribution. Chem Eng Sci 2006;61:4625-33.  DOI
               67.       Basak S, Chen D, Biswas P. Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law.
                    Chem Eng Sci 2007;62:1263-8.  DOI
               68.       Gates B, Mayers B, Cattle B, Xia Y. Synthesis and characterization of uniform nanowires of trigonal selenium. Adv Funct Mater
                    2002;12:219.  DOI
               69.       Chen YZ, You YT, Chen PJ, et al. Environmentally and mechanically stable selenium 1D/2D hybrid structures for broad-range
                    photoresponse from ultraviolet to infrared wavelengths. ACS Appl Mater Interfaces 2018;10:35477-86.  DOI  PubMed
               70.       Yaman M, Khudiyev T, Ozgur E, et al. Arrays of indefinitely long uniform nanowires and nanotubes. Nat Mater 2011;10:494-501.
                    DOI  PubMed
               71.       Kasirga TS. Chemical vapor transport synthesis of a selenium-based two-dimensional material. Turk J Phys 2018:42.  DOI
               72.       Filippo E, Manno D, Serra A. Characterization and growth mechanism of selenium microtubes synthesized by a vapor phase
                    deposition route. Crystal Growth & Design 2010;10:4890-7.  DOI
               73.       Cheng M, Wu S, Zhu Z, Guo G. Large second-harmonic generation and linear electro-optic effect in trigonal selenium and tellurium.
                    Phys Rev B 2019:100.  DOI
               74.       Jun SW, Jeon S, Kwon J, Lee J, Kim C, Hong SW. Full-color laser displays based on optical second-harmonic generation from the
                    thin film arrays of selenium nanowires. ACS Photonics 2022;9:368-77.  DOI
               75.       Gumennik A, Stolyarov AM, Schell BR, et al. All-in-fiber chemical sensing. Adv Mater 2012;24:6005-9.  DOI  PubMed
               76.       Deng DS, Orf ND, Abouraddy AF, et al. In-fiber semiconductor filament arrays. Nano Lett 2008;8:4265-9.  DOI  PubMed
               77.       Yan W, Nguyen-dang T, Cayron C, et al. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Opt Mater
                    Express 2017;7:1388.  DOI
               78.       Jiang X, Huang W, Wang R, et al. Photocarrier relaxation pathways in selenium quantum dots and their application in UV-Vis
                    photodetection. Nanoscale 2020;12:11232-41.  DOI  PubMed
               79.       Shin D, Zhu T, Huang X, Gunawan O, Blum V, Mitzi DB. Earth-abundant chalcogenide photovoltaic devices with over 5%
                    efficiency based on a Cu  BaSn(S,Se)  absorber. Adv Mater 2017;29:1606945.  DOI  PubMed
                                            4
                                    2
               80.       Jayswal NK, Rijal S, Subedi B, et al. Optical properties of thin film Sb Se  and identification of its electronic losses in photovoltaic
                                                                  2  3
                    devices. Solar Energy 2021;228:38-44.  DOI
               81.       Hadar I, Song T, Ke W, Kanatzidis MG. Modern processing and insights on selenium solar cells: the world’s first photovoltaic
                    device. Adv Energy Mater 2019;9:1802766.  DOI
               82.       Liu SC, Dai CM, Min Y, et al. An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics. Nat
                    Commun 2021;12:670.  DOI  PubMed  PMC
               83.       Seo Y, Lee B, Jo Y, et al. Facile microwave-assisted synthesis of multiphase CuInSe  nanoparticles and role of secondary cuse phase
                                                                           2
                    on photovoltaic device performance. J Phys Chem C 2013;117:9529-36.  DOI
               84.       Ulaganathan RK, Yadav K, Sankar R, Chou FC, Chen Y. Hybrid InSe nanosheets and MoS  quantum dots for high-performance
                                                                                 2
                    broadband photodetectors and photovoltaic cells. Adv Mater Interfaces 2019;6:1801336.  DOI
               85.       Wu M, Wang Y, Gao S, et al. Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-
                    integrated monitoring. Nano Energy 2019;56:693-9.  DOI
               86.       Harkin JM, Dong A, Chesters G. Elevation of selenium levels in air by xerography. Nature 1976;259:204-5.  DOI  PubMed
               87.       Zhu B, Wu L, Wang Y, et al. A highly selective and ultrasensitive ratiometric far-red fluorescent probe for imaging endogenous
                    peroxynitrite in living cells. Sensor Actuat B-Chem 2018;259:797-802.  DOI
               88.       Manjare ST, Kim Y, Churchill DG. Selenium- and tellurium-containing fluorescent molecular probes for the detection of biologically
                    important analytes. Acc Chem Res 2014;47:2985-98.  DOI  PubMed
               89.       Triet Ho LT, Mukherjee A, Vasileska D, et al. Modeling dark current conduction mechanisms and mitigation techniques in vertically
                    stacked amorphous selenium-based photodetectors. ACS Appl Electron Mater 2021;3:3538-46.  DOI  PubMed  PMC
               90.       Liao ZM, Hou C, Liu LP, Yu DP. Temperature dependence of photoelectrical properties of single selenium nanowires. Nanoscale
                    Res Lett 2010;5:926-9.  DOI  PubMed  PMC
               91.       Luo LB, Jie JS, Chen ZH, et al. Photoconductive properties of selenium nanowire photodetectors. J Nanosci Nanotechnol
                    2009;9:6292-8.  DOI  PubMed
               92.       Akiyama N. A sensor array based on trigonal-selenium nanowires for the detection of gas mixtures. Sensor Actuat B-Chem
                    2016;223:131-7.  DOI
               93.       Yan W, Page A, Nguyen-Dang T, et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater
   33   34   35   36   37   38   39   40   41   42   43