Page 36 - Read Online
P. 36

Dang et al. Chem Synth 2023;3:14  https://dx.doi.org/10.20517/cs.2022.33        Page 17 of 20

               Copyright
               © The Author(s) 2023.


               REFERENCES
               1.       Yan W, Noel G, Loke G, et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 2022;603:616-23.  DOI
                    PubMed
               2.       Yan W, Dong C, Xiang Y, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today
                    2020;35:168-94.  DOI
               3.       Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM. Fiber-based wearable electronics: a review of materials, fabrication, devices, and
                    applications. Adv Mater 2014;26:5310-36.  DOI  PubMed
               4.       Leber A, Dong C, Chandran R, Das Gupta T, Bartolomei N, Sorin F. Soft and stretchable liquid metal transmission lines as
                    distributed probes of multimodal deformations. Nat Electron 2020;3:316-26.  DOI
               5.       Song W. A smart sensor that can be woven into everyday life. Nature 2022;603:585-6.  DOI  PubMed
               6.       Du M, Huang L, Zheng J, et al. Flexible fiber probe for efficient neural stimulation and detection. Adv Sci (Weinh) 2020;7:2001410.
                    DOI  PubMed  PMC
               7.       Weng W, Yang J, Zhang Y, et al. A route toward smart system integration: from fiber design to device construction. Adv Mater
                    2020;32:e1902301.  DOI  PubMed
               8.       Loke G, Alain J, Yan W, et al. Computing fabrics. Matter 2020;2:786-8.  DOI
               9.       Liu M, Lin Z, Wang X, et al. Focused rotary jet spinning: a novel fiber technology for heart biofabrication. Matter 2022;5:3576-9.
                    DOI
               10.       Jiang S, Patel DC, Kim J, et al. Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nat Commun
                    2020;11:6115.  DOI  PubMed  PMC
               11.       Xu B, Ma S, Xiang Y, et al. In-fiber structured particles and filament arrays from the perspective of fluid instabilities. Adv Fiber
                    Mater 2020;2:1-12.  DOI
               12.       Pan S, Zhu M. Nanoprocessed silk makes skin feel cool. Adv Fiber Mater 2022;4:319-20.  DOI
               13.       Wang H, Zhang Y, Liang X, Zhang Y. Smart fibers and textiles for personal health management. ACS Nano 2021;15:12497-508.
                    DOI  PubMed
               14.       Zhang T, Li K, Zhang J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 2017;41:35-
                    42.  DOI
               15.       Martin-monier L, Gupta TD, Yan W, Lacour S, Sorin F. Nanoscale controlled oxidation of liquid metals for stretchable electronics
                    and photonics. Adv Funct Mater 2021;31:2006711.  DOI
               16.       Pan S, Zhu M. Fiber electronics bring a new generation of acoustic fabrics. Adv Fiber Mater 2022;4:321-3.  DOI
               17.       Qian S, Liu M, Dou Y, Fink Y, Yan W. A ‘Moore’s law’ for fibers enables intelligent fabrics. Natl Sci Rev 2023;10:nwac202.  DOI
                    PubMed  PMC
               18.       Loke G, Khudiyev T, Wang B, et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat Commun
                    2021;12:3317.  DOI  PubMed  PMC
               19.       Kim J, Jia X. From space to battlefield: a new breed of multifunctional fiber sheets for extreme environments. Matter 2020;3:602-4.
                    DOI
               20.       Cao Y, Wu H, Allec SI, Wong BM, Nguyen DS, Wang C. A highly stretchy, transparent elastomer with the capability to
                    automatically self-heal underwater. Adv Mater 2018;30:e1804602.  DOI  PubMed
               21.       Hou C, Jia X, Wei L, et al. Crystalline silicon core fibres from aluminium core preforms. Nat Commun 2015;6:6248.  DOI  PubMed
               22.       Wei L, Hou C, Levy E, et al. Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Adv Mater
                    2017;29:1603033.  DOI  PubMed
               23.       Qu Y, Nguyen-Dang T, Page AG, et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing.
                    Adv Mater 2018;30:e1707251.  DOI  PubMed
               24.       Yan W, Burgos-caminal A, Das Gupta T, Moser J, Sorin F. Direct synthesis of selenium nanowire mesh on a solid substrate and
                    insights into ultrafast photocarrier dynamics. J Phys Chem C 2018;122:25134-41.  DOI
               25.       Chin AL, Jiang S, Jang E, et al. Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement. Nat
                    Commun 2021;12:5138.  DOI  PubMed  PMC
               26.       Dong C, Leber A, Das Gupta T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun
                    2020;11:3537.  DOI  PubMed  PMC
               27.       Cao Y, Morrissey TG, Acome E, et al. A Transparent, self-healing, highly stretchable ionic conductor. Adv Mater 2017;29:1605099.
                    DOI  PubMed
               28.       Yan W, Richard I, Kurtuldu G, et al. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat Nanotechnol
                    2020;15:875-82.  DOI  PubMed
               29.       Nguyen-dang T, de Luca AC, Yan W, et al. Controlled sub-micrometer hierarchical textures engineered in polymeric fibers and
                    microchannels via thermal drawing. Adv Funct Mater 2017;27:1605935.  DOI
               30.       Zhang Y, Li X, Kim J, et al. Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation
   31   32   33   34   35   36   37   38   39   40   41