Page 37 - Read Online
P. 37
Page 18 of 20 Dang et al. Chem Synth 2023;3:14 https://dx.doi.org/10.20517/cs.2022.33
sensing. Adv Optical Mater 2021;9:2001815. DOI
31. Jiang S, Song J, Zhang Y, et al. Nano-optoelectrodes integrated with flexible multifunctional fiber probes by high-throughput scalable
fabrication. ACS Appl Mater Interfaces 2021;13:9156-65. DOI PubMed
32. Das Gupta T, Martin-Monier L, Yan W, et al. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities.
Nat Nanotechnol 2019;14:320-7. DOI PubMed
33. Kim J, Zhao Y, Yang S, et al. Laser machined fiber-based microprobe: application in microscale electroporation. Adv Fiber Mater
2022;4:859-72. DOI
34. Dong C, Page AG, Yan W, Nguyen-dang T, Sorin F. Microstructured multimaterial fibers for microfluidic sensing. Adv Mater
Technol 2019;4:1900417. DOI
35. Grena B, Alayrac JB, Levy E, Stolyarov AM, Joannopoulos JD, Fink Y. Thermally-drawn fibers with spatially-selective porous
domains. Nat Commun 2017;8:364. DOI PubMed PMC
36. Sun H, Xie S, Li Y, et al. Large-area supercapacitor textiles with novel hierarchical conducting structures. Adv Mater 2016;28:8431-
8. DOI PubMed
37. Khudiyev T, Lee JT, Cox JR, et al. 100 m long thermally drawn supercapacitor fibers with applications to 3D printing and textiles.
Adv Mater 2020;32:e2004971. DOI PubMed
38. Zhang J, Zhang T, Zhang H, et al. Single-crystal snse thermoelectric fibers via laser-induced directional crystallization: from 1d fibers
to multidimensional fabrics. Adv Mater 2020;32:e2002702. DOI PubMed
39. Yan W, Qu Y, Gupta TD, et al. Semiconducting nanowire-based optoelectronic fibers. Adv Mater 2017;29:1700681. DOI PubMed
40. Hou C, Jia X, Wei L, et al. Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput
reactive fiber drawing. Nano Lett 2013;13:975-9. DOI PubMed
41. Zhang H, li L, Zheng D, et al. Broadband photodetector based on vapor-deposited selenium self-supporting films. Ceramics
International 2022;48:27750-7. DOI
42. Shalaev VM. Physics Transforming light. Science 2008;322:384-6. DOI PubMed
43. Hu K, Chen H, Jiang M, Teng F, Zheng L, Fang X. Broadband photoresponse enhancement of a high-performance t -Se microtube
photodetector by plasmonic metallic nanoparticles. Adv Funct Mater 2016;26:6641-8. DOI
44. Kumar M, Dubey A, Adhikari N, Venkatesan S, Qiao Q. Strategic review of secondary phases, defects and defect-complexes in
kesterite CZTS-Se solar cells. Energy Environ Sci 2015;8:3134-59. DOI
45. Wang S, Liu X, Zhou P. The road for 2D semiconductors in the silicon age. Adv Mater 2022;34:e2106886. DOI PubMed
46. Kang SK, Park G, Kim K, et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for
transient electronics. ACS Appl Mater Interfaces 2015;7:9297-305. DOI PubMed
47. Khalid A, Tran PA, Norello R, Simpson DA, O’Connor AJ, Tomljenovic-Hanic S. Intrinsic fluorescence of selenium nanoparticles
for cellular imaging applications. Nanoscale 2016;8:3376. DOI PubMed
48. Ramírez-montes L, López-pérez W, González-hernández R, Pinilla C. Large thermoelectric figure of merit in hexagonal phase of 2D
selenium and tellurium. Int J Quantum Chem 2020:120. DOI
49. Qin JK, Zhou F, Wang J, Chen J, et al. Anisotropic signal processing with trigonal selenium nanosheet synaptic transistors. ACS
Nano 2020;14:10018-26. DOI PubMed
50. Huang W, Wang M, Hu L, Wang C, Xie Z, Zhang H. Recent advances in semiconducting monoelemental selenium nanostructures for
device applications. Adv Funct Mater 2020;30:2003301. DOI
51. Kumar A, Sevonkaev I, Goia DV. Synthesis of selenium particles with various morphologies. J Colloid Interf Sci 2014;416:119-123.
DOI PubMed
52. Gao X, Zhang J, Zhang L. Hollow sphere selenium nanoparticles: their in-vitro anti hydroxyl radical effect. Adv Mater 2002;14:290-
3. DOI
53. Zhang J, Xu Y, Fan L, Zhu Y, Liang J, Qian Y. Graphene-encapsulated selenium/polyaniline core-shell nanowires with enhanced
electrochemical performance for Li-Se batteries. Nano Energy 2015;13:592-600. DOI
54. Zhu Y, Hu X. Preparation of powders of selenium nanorods and nanowires by microwave-polyol method. Mater Lett 2004;58:1234-
6. DOI
55. Xi G, Xiong K, Zhao Q, Zhang R, Zhang H, Qian Y. Nucleation-dissolution-recrystallization: a new growth mechanism for t -
selenium nanotubes. Crystal Growth & Design 2006;6:577-82. DOI
56. Ma Y, Qi L, Shen W, Ma J. Selective synthesis of single-crystalline selenium nanobelts and nanowires in micellar solutions of
nonionic surfactants. Langmuir 2005;21:6161-4. DOI PubMed
57. Qin J, Qiu G, Jian J, et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications.
ACS Nano 2017;11:10222-9. DOI PubMed
58. Xing C, Xie Z, Liang Z, et al. 2D Nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics. Adv
Optical Mater 2017;5:1700884. DOI
59. Shi Z, Zhang H, Khan K, Cao R, Xu K, Zhang H. Two-dimensional selenium and its composites for device applications. Nano Res
2022;15:104-22. DOI
60. Liu C, Hu T, Wu Y B, et al. 2D selenium allotropes from first principles and swarm intelligence. J Phys Condens Matter
2019;31:235702. DOI PubMed
61. Xian L, Pérez Paz A, Bianco E, Ajayan PM, Rubio A. Square selenene and tellurene: novel group VI elemental 2D materials with