Page 41 - Read Online
P. 41

Page 22 of 22                  Ernest et al. Complex Eng Syst 2023;3:4  I http://dx.doi.org/10.20517/ces.2022.54



               8.  Coleman CP, Godbole D. A comparison of robustness: fuzzy logic, PID, and sliding mode control. In: Proceedings of 1994 IEEE 3rd
                  International Fuzzy Systems Conference. IEEE; 1994. pp. 1654–59. DOI
               9.  Moral A, Castiello C, Magdalena L, Mencar C. Explainable Fuzzy Systems. Springer; 2021. DOI
               10. Arnett TJ. Verification of genetic fuzzy systems [MS Thesis]. University of Cincinnati; 2016. DOI
               11. Ernest ND. Genetic fuzzy trees for intelligent control of unmanned combat aerial vehicles. University of Cincinnati; 2015. DOI
               12. Herrera F. Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol Intel 2008;1:27-46. DOI
               13. Fleck DE, Ernest N, Adler CM, et al. Prediction of lithium response in first-episode mania using the LITHium Intelligent Agent (LITHIA):
                  pilot data and proof-of-concept. Bipolar Disord 2017;19:259-72. DOI
               14. Ernest N, Carroll D, Schumacher C, et al. Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in
                  simulated air combat missions. J Def Manag 2016;;6:2167-0374. DOI
               15. Thales. Thales GFT AI Toolkit. Thales; 2022. Available from: https://www.thalesgroup.com/en/markets/aerospace/big-data-aerospace/
                  genetic-fuzzy-tree-ai-toolkit-critical-decisions. [Last accessed on 20 Mar 2023]
               16. Marques-Silva J. Practical applications of boolean satisfiability. In: 2008 9th International Workshop on Discrete Event Systems. IEEE;
                  2008. pp. 74–80. DOI
               17. Hinchey MG, Bowen JP. Applications of formal methods. vol. 1. Prentice Hall New York; 1995. DOI
               18. Ernest N, Kunkel B, Arnett T. An investigation into the impact of system transparency on work flows of fuzzy tree based AIs. In: North
                  American Fuzzy Information Processing Society Annual Conference. Springer; 2020. pp. 349–59. DOI
               19. Moura Ld, Bjørner N. Z3: An efficient SMT solver. In: International conference on Tools and Algorithms for the Construction and
                  Analysis of Systems. Springer; 2008. pp. 337–40. DOI
               20. Gacek A, Backes J, Whalen M, Wagner L, Ghassabani E. The JKind model checker. In: International Conference on Computer Aided
                  Verification. Springer; 2018. pp. 20–27. [ DOI
               21. Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Studies 1975;7:1–13. DOI
               22. Scapin D, Cisotto G, Gindullina E, Badia L. Shapley Value as an Aid to Biomedical Machine Learning: a Heart Disease Dataset Analysis.
                  2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid) 2022:933–39. DOI
               23. Heuillet A, Couthouis F, Díaz-Rodríguez N. Collective EXplainable AI: Explaining Cooperative Strategies and Agent Contribution in
                  Multiagent Reinforcement Learning With Shapley Values. IEEE Comput Intell Mag 2022;17:59–71. DOI
               24. Burnysc2. Burnysc2 python-SC2 Python Package. Github; 2022. Available from: https://github.com/BurnySc2/python-sc2. [Last ac-
                  cessed on 20 Mar 2023]
               25. Wikipedia. Progress in artificial intelligence. Wikimedia Foundation; 2022. Available from: https://en.wikipedia.org/wiki/Progress_in_a
                  rtificial_intelligence#Current_performance. [Last accessed on 20 Mar 2023]
   36   37   38   39   40   41   42   43   44   45   46