Page 24 - Read Online
P. 24

Page 8 of 15                    Sun et al. Complex Eng Syst 2022;2:17  I http://dx.doi.org/10.20517/ces.2022.48


               By mathematical induction, for    ∈ [      ,      +1 ) and   (  ) =      , we have

                                                                             ∫    ∧     
                                                                                          
                                   Λ(   ∧    ,   (   ∧    ),       ) =     
                                 (  ∧   )                         Λ(      ,   (      ),       ) +          (  ,       )    .  (22)
                                                  
                                                                                    
               It follows from (8) and (21) that
                                                  
                                  (  ∧   )        
                                   Λ(   ∧    ,   (   ∧    ),       )
                                                     ∫    ∧         
                                                                 
                          ≤                    Λ(      ,   (      ),      −1 ) +          (  ,       )    
                                                            
                                                               ∫
                                                                    1
                                                                        
                          ≤           (      ,   0 )           0 Λ(   0 ,   (   0 ),    0 ) +          (      ,   0 )           (  ,    0 )     + · · ·
                                                         
                                                                   0
                                ∫                       ∫                    ∫    ∧     
                                       −1                                           
                             2
                                                                 
                                                                                        
                                          
                          +               (  ,      −2 )     +                (  ,      −1 )     +          (  ,       )    .  (23)
                               
                                      −2                      −1                    
               Because       > 1, we obtain from (23) that
                                                                                ∫    ∧     
                                                            (  ,   0 )                      
                              (  ∧   )                     [          0 Λ(   0 ,   (   0 ),    0 ) +          (  ,       )    ].
                                Λ(   ∧    ,   (   ∧    ),       ) ≤   
                                                                                    0
               Similar to the proof stated in Part 1, we can derive
                                                                                ∫    ∧     
                                                             (  ,   0 )                     
                                 Λ(   ∧    ,   (   ∧    ),       ) ≤   
                                (  ∧   )                    [   1 − (   1 −    2 ¯      )         (  (  ))    
                                                                                    0
                                                                         ∫    ∧        
                                                                                    
                                                                                        
                                                    − (   3 −    4 ¯           −      2 )       |  (  )|     ],
                                                                             0
               where
                                     (                  )          (       ∫             )
                                                                                0
                                  1 =    sup         0 Λ(   0 ,   ,    0 ) +    2 ¯              sup       (  )    
                                                                                     0
                                      [   0 −  ,   0 ]              [   0 −  ,   0 ]     0 −  
                                             (       ∫            )
                                                          0
                                                                 
                                    +    4 ¯              sup          0  |  |      ,
                                               [   0 −  ,   0 ]     0 −  
               is finite. Then,
                                                 
                                                  Λ(   ∧    ,   (   ∧    ),       ) ≤    1   
                                                 (  ∧   )                        (  ,   0 ) .          (24)
                                                                             
                                                                 
                                                         
               Recalling condition (7), we obtain
                                                                            
                                                                1        (  ,   0 ) −  (  ∧   )
                                               |  (   ∧    )| ≤              .
                                                                 
                                                               1
               This implies
                                                                           
                                                             1        (  ,   0 ) −  (  ∧   )
                                                (   ≤   ) ≤     1                      .
                                                   
                                               
                                                                   
               Letting    → ∞, we observe that   (   ≤   ) = 0 and hence    ≥    a.s. We let    → ∞ in (24) to obtain
                                             ∞                   ∞
                                                Λ(  ,   (  ),   (  )) ≤          (  ,   0 )    1    −     .
                                                                  
   19   20   21   22   23   24   25   26   27   28   29