Page 23 - Read Online
P. 23

Sun et al. Complex Eng Syst 2022;2:17  I http://dx.doi.org/10.20517/ces.2022.48   Page 7 of 15


               Recalling the condition (7), we can get

                                                                      
                                                     1      (  ∧     ,   ) |      (   ∧      ,   )| ≤   .
               This implies
                                                                        
                                                                         −  (  ∧     ,   )
                                              (     ,   ≤   ) ≤   |      (   ∧      ,   )| ≤      .
                                                                         1
               We observe that
                                                               
                                                  (     ,   ≤   ) ≤     −  (  ∧     ,   ) .
                                                               1      
               Letting    → ∞ yields that   (   ∞,   ⩽   ) = 0. Hence,    ∞,   = ∞ a.s. Therefore, we have    ∞,   = ∞ a.s. This implies
               that the unique solution for the   -th subsystem (14) will not explode in finite time.
               Step 2. This section proves the existence of a unique global solution for SSS (1). Let    0 > 0 be a sufficiently
               large integer, such that    0 > |      (0)|, where |      (0)| is the initial data of the   -th subsystem. For any integer
                  ≥    0, we define the stopping time sequence as follows:
                                                 
                                                 = inf{   ∈ [      ,      +1 ) : |  (  )| ⩾   }.
                                                 
                         
               Clearly,    increases as    → ∞. For    ∈ [   0 ,    1 ),   (  ) =    0, using the It ˆ formula, we have
                                                                           
                         
                                               0      0       0
                                                (  ∧   )        
                                                  Λ(   ∧    ,   (   ∧    ),    0 )
                                                               ∫    ∧   0   
                                                                          
                                         ≤            0 Λ(   0 ,   (   0 ),    0 ) +          (  ,    0 )    ,  (17)
                                                                   0
               where   (  ,    0 ) =   Λ(  ,   (  ),    0 )+LΛ(  ,   (  ),   (  ),    0 ). Letting    =    1,accordingtocondition(8)inAssumption
               3, we derive that
                                                  1 Λ(   1 ,   (   1 ),    1 ) ≤                 1  Λ(   1 ,   (   1 ),    0 )
                                                                 ∫
                                                                      1
                                                                          
                                        ≤       [          0 Λ(   0 ,   (   0 ),    0 ) +          (  ,    0 )    ].  (18)
                                                                     0
               For    ∈ [   1 ,    2 ),   (  ) =    1, we obtain
                                               1      1       1
                                                (  ∧   )        
                                                  Λ(   ∧    ,   (   ∧    ),    1 )
                                                               ∫    ∧   1   
                                                                          
                                         ≤            1 Λ(   1 ,   (   1 ),    1 ) +          (  ,    1 )    .  (19)
                                                                   1
               Combining (18) and (19), it implies that
                                    1      1       1
                                     (  ∧   )        
                                       Λ(   ∧    ,   (   ∧    ),    1 )
                                                       ∫                  ∫    ∧   1
                                                            1                    
                                                                
                                                                                     
                              ≤       [          0 Λ(   0 ,   (   0 ),    0 ) +          (  ,    0 )    ] +          (  ,    1 )    .  (20)
                                                           0                  1
               For    ∈ [     −1 ,       ) and   (  ) =      −1, we assume that
                                       (  ∧     −1 ) Λ(   ∧      −1 ,   (   ∧      −1 ),      −1 )
                                        
                                                           
                                                 
                                                              ∫    ∧      −1
                                                                     
                                                                           
                                ≤              −1 Λ(     −1 ,   (     −1 ),      −1 ) +          (  ,      −1 )    
                                                                     −1
                                                                       ∫
                                                                             1
                                                                                
                                ≤             (     −1 ,   0 )           0 Λ(   0 ,   (   0 ),    0 ) +             (     −1 ,   0 )          (  ,    0 )    
                                                                            0
                                              ∫                        ∫
                                                   2                          −1
                                                       
                                                                                 
                                +          (     −1 ,   0 )−1          (  ,    1 )     + · · · +                (  ,      −2 )    
                                     
                                                  1                          −2
                                    ∫    ∧     −1
                                          
                                                
                                +               (  ,      −1 )    .                                    (21)
                                          −1
   18   19   20   21   22   23   24   25   26   27   28