Page 82 - Read Online
P. 82
Nickoloff et al. Cancer Drug Resist 2021;4:244-63 I http://dx.doi.org/10.20517/cdr.2020.89 Page 258
59. Malkova A, Ira G. Break-induced replication: functions and molecular mechanism. Curr Opin Genet Dev 2013;23:271-9.
60. Sotiriou SK, Kamileri I, Lugli N, et al. Mammalian RAD52 functions in break-induced replication repair of collapsed DNA replication
forks. Mol Cell 2016;64:1127-34.
61. Tutt A, Bertwistle D, Valentine J, et al. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks
occurring between repeated sequences. EMBO J 2001;20:4704-16.
62. Bhargava R, Onyango DO, Stark JM. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet
2016;32:566-75.
63. Karger CP, Peschke P. RBE and related modeling in carbon-ion therapy. Phys Med Biol 2017;63:01TR02.
64. Nickoloff JA, Sharma N, Taylor L. Clustered DNA double-strand breaks: biological effects and relevance to cancer radiotherapy. Genes
2020;11:99-116.
65. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose,
and linear energy transfer. Phys Med Biol 2014;59:R419-72.
66. Howard M, Beltran C, Sarkaria J, Herman MG. Characterization of relative biological effectiveness for conventional radiation therapy: a
comparison of clinical 6 MV X-rays and 137Cs. J Radiat Res 2017;58:608-13.
67. Asaithamby A, Chen DJ. Cellular responses to DNA double-strand breaks after low-dose γ-irradiation. Nucleic Acids Res 2009;37:3912-23.
68. Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R
Coll Radiol) 2013;25:578-85.
69. Vitti ET, Parsons JL. The radiobiological effects of proton beam therapy: impact on DNA damage and repair. Cancers 2019;11:946.
70. Nickoloff JA. Photon, light ion, and heavy ion cancer radiotherapy: paths from physics and biology to clinical practice. Ann Transl Med
2015;3:336.
71. Bukowska B, Karwowski BT. The clustered DNA lesions - types, pathways of repair and relevance to human health. Curr Med Chem
2018;25:2722-35.
72. Mladenova V, Mladenov E, Iliakis G. Novel biological approaches for testing the contributions of single DSBs and DSB clusters to the
biological effects of high LET radiation. Front Oncol 2016;6:163.
73. Sage E, Shikazono N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic Biol Med 2017;107:125-35.
74. Pang D, Winters TA, Jung M, et al. Radiation-generated short DNA fragments may perturb non-homologous end-joining and induce
genomic instability. J Radiat Res 2011;52:309-19.
75. Chan DW, Chen BP-C, Prithivirasingh S, et al. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required
for rejoining of DNA double-strand breaks. Genes Dev 2002;16:2333-8.
76. Okayasu R, Okada M, Okabe A, et al. Repair of DNA damage induced by accelerated heavy ions in mammalian cells proficient and
deficient in the non-homologous end-joining pathway. Radiat Res 2006;165:59-67.
77. Wang H, Zhang X, Wang P, et al. Characteristics of DNA-binding proteins determine the biological sensitivity to high-linear energy
transfer radiation. Nucleic Acids Res 2010;38:3245-51.
78. Hada M, Sutherland BM. Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 2006;165:223-30.
79. Gerelchuluun A, Manabe E, Ishikawa T, et al. The major DNA repair pathway after both proton and carbon-ion radiation is NHEJ, but the
HR pathway is more relevant in carbon ions. Radiat Res 2015;183:345-56.
80. Fontana AO, Augsburger MA, Grosse N, et al. Differential DNA repair pathway choice in cancer cells after proton- and photon-
irradiation. Radiother Oncol 2015;116:374-80.
81. Vitti ET, Kacperek A, Parsons JL. Targeting DNA double-strand break repair enhances radiosensitivity of HPV-positive and HPV-negative
head and neck squamous cell carcinoma to photons and protons. Cancers 2020;12:1490.
82. Cartwright IM, Su C, Haskins JS, et al. DNA repair deficient chinese hamster ovary cells exhibiting differential sensitivity to charged
particle radiation under aerobic and hypoxic conditions. Int J Mol Sci 2018;19:2228.
83. Antonovic L, Lindblom E, Dasu A, et al. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local
oxygenation changes. J Radiat Res 2014;55:902-11.
84. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004;59:928-42.
85. Higgins PD, DeLuca PM, Jr. Gould MN. Effect of pulsed dose in simultaneous and sequential irradiation of V-79 cells by 14.8-MeV
60
neutrons and Co photons. Radiat Res 1984;99:591-5.
86. Cheng L, Brzozowska B, Sollazzo A, et al. Simultaneous induction of dispersed and clustered DNA lesions compromises DNA damage
response in human peripheral blood lymphocytes. PLoS One 2018;13:e0204068.
87. Staaf E, Brehwens K, Haghdoost S, Czub J, Wojcik A. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha
particles. Genome Integr 2012;3:8.
88. Newhauser WD, Durante M. Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer 2011;11:438-48.
89. Tsujii H, Kamada T, Shirai T, et al. Carbon-Ion Radiotherapy Principals, Practices, and Treatment Planning. Tokyo: Springer; 2014. p.
312.
90. Tsujii H, Kamada T. A review of update clinical results of carbon ion radiotherapy. Jpn J Clin Oncol 2012;42:670-85.
91. Kamada T, Tsujii H, Blakely EA, et al. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol
2015;16:e93-e100.
92. Allen CP, Borak TB, Tsujii H, Nickoloff JA. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved
beam focusing to advance cancer therapy. Mutat Res 2011;711:150-7.
93. Sunada S, Cartwright IM, Hirakawa H, et al. Investigation of the relative biological effectiveness and uniform isobiological killing effects