Page 82 - Read Online
P. 82

Nickoloff et al. Cancer Drug Resist 2021;4:244-63  I  http://dx.doi.org/10.20517/cdr.2020.89                                         Page 258

               59.  Malkova A, Ira G. Break-induced replication: functions and molecular mechanism. Curr Opin Genet Dev 2013;23:271-9.
               60.  Sotiriou SK, Kamileri I, Lugli N, et al. Mammalian RAD52 functions in break-induced replication repair of collapsed DNA replication
                   forks. Mol Cell 2016;64:1127-34.
               61.  Tutt A, Bertwistle D, Valentine J, et al. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks
                   occurring between repeated sequences. EMBO J 2001;20:4704-16.
               62.  Bhargava R, Onyango DO, Stark JM. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet
                   2016;32:566-75.
               63.  Karger CP, Peschke P. RBE and related modeling in carbon-ion therapy. Phys Med Biol 2017;63:01TR02.
               64.  Nickoloff JA, Sharma N, Taylor L. Clustered DNA double-strand breaks: biological effects and relevance to cancer radiotherapy. Genes
                   2020;11:99-116.
               65.  Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose,
                   and linear energy transfer. Phys Med Biol 2014;59:R419-72.
               66.  Howard M, Beltran C, Sarkaria J, Herman MG. Characterization of relative biological effectiveness for conventional radiation therapy: a
                   comparison of clinical 6 MV X-rays and 137Cs. J Radiat Res 2017;58:608-13.
               67.  Asaithamby A, Chen DJ. Cellular responses to DNA double-strand breaks after low-dose γ-irradiation. Nucleic Acids Res 2009;37:3912-23.
               68.  Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R
                   Coll Radiol) 2013;25:578-85.
               69.  Vitti ET, Parsons JL. The radiobiological effects of proton beam therapy: impact on DNA damage and repair. Cancers 2019;11:946.
               70.  Nickoloff JA. Photon, light ion, and heavy ion cancer radiotherapy: paths from physics and biology to clinical practice. Ann Transl Med
                   2015;3:336.
               71.  Bukowska B, Karwowski BT. The clustered DNA lesions - types, pathways of repair and relevance to human health. Curr Med Chem
                   2018;25:2722-35.
               72.  Mladenova V, Mladenov E, Iliakis G. Novel biological approaches for testing the contributions of single DSBs and DSB clusters to the
                   biological effects of high LET radiation. Front Oncol 2016;6:163.
               73.  Sage E, Shikazono N. Radiation-induced clustered DNA lesions: Repair and mutagenesis. Free Radic Biol Med 2017;107:125-35.
               74.  Pang D, Winters TA, Jung M, et al. Radiation-generated short DNA fragments may perturb non-homologous end-joining and induce
                   genomic instability. J Radiat Res 2011;52:309-19.
               75.  Chan DW, Chen BP-C, Prithivirasingh S, et al. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required
                   for rejoining of DNA double-strand breaks. Genes Dev 2002;16:2333-8.
               76.  Okayasu R, Okada M, Okabe A, et al. Repair of DNA damage induced by accelerated heavy ions in mammalian cells proficient and
                   deficient in the non-homologous end-joining pathway. Radiat Res 2006;165:59-67.
               77.  Wang H, Zhang X, Wang P, et al. Characteristics of DNA-binding proteins determine the biological sensitivity to high-linear energy
                   transfer radiation. Nucleic Acids Res 2010;38:3245-51.
               78.  Hada M, Sutherland BM. Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 2006;165:223-30.
               79.  Gerelchuluun A, Manabe E, Ishikawa T, et al. The major DNA repair pathway after both proton and carbon-ion radiation is NHEJ, but the
                   HR pathway is more relevant in carbon ions. Radiat Res 2015;183:345-56.
               80.  Fontana AO, Augsburger MA, Grosse N, et al. Differential DNA repair pathway choice in cancer cells after proton- and photon-
                   irradiation. Radiother Oncol 2015;116:374-80.
               81.  Vitti ET, Kacperek A, Parsons JL. Targeting DNA double-strand break repair enhances radiosensitivity of HPV-positive and HPV-negative
                   head and neck squamous cell carcinoma to photons and protons. Cancers 2020;12:1490.
               82.  Cartwright IM, Su C, Haskins JS, et al. DNA repair deficient chinese hamster ovary cells exhibiting differential sensitivity to charged
                   particle radiation under aerobic and hypoxic conditions. Int J Mol Sci 2018;19:2228.
               83.  Antonovic L, Lindblom E, Dasu A, et al. Clinical oxygen enhancement ratio of tumors in carbon ion radiotherapy: the influence of local
                   oxygenation changes. J Radiat Res 2014;55:902-11.
               84.  Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004;59:928-42.
               85.  Higgins PD, DeLuca PM, Jr. Gould MN. Effect of pulsed dose in simultaneous and sequential irradiation of V-79 cells by 14.8-MeV
                           60
                   neutrons and  Co photons. Radiat Res 1984;99:591-5.
               86.  Cheng L, Brzozowska B, Sollazzo A, et al. Simultaneous induction of dispersed and clustered DNA lesions compromises DNA damage
                   response in human peripheral blood lymphocytes. PLoS One 2018;13:e0204068.
               87.  Staaf E, Brehwens K, Haghdoost S, Czub J, Wojcik A. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha
                   particles. Genome Integr 2012;3:8.
               88.  Newhauser WD, Durante M. Assessing the risk of second malignancies after modern radiotherapy. Nat Rev Cancer 2011;11:438-48.
               89.  Tsujii H, Kamada T, Shirai T, et al. Carbon-Ion Radiotherapy Principals, Practices, and Treatment Planning. Tokyo: Springer; 2014. p.
                   312.
               90.  Tsujii H, Kamada T. A review of update clinical results of carbon ion radiotherapy. Jpn J Clin Oncol 2012;42:670-85.
               91.  Kamada T, Tsujii H, Blakely EA, et al. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol
                   2015;16:e93-e100.
               92.  Allen CP, Borak TB, Tsujii H, Nickoloff JA. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved
                   beam focusing to advance cancer therapy. Mutat Res 2011;711:150-7.
               93.  Sunada S, Cartwright IM, Hirakawa H, et al. Investigation of the relative biological effectiveness and uniform isobiological killing effects
   77   78   79   80   81   82   83   84   85   86   87