Page 81 - Read Online
P. 81

Page 257                                           Nickoloff et al. Cancer Drug Resist 2021;4:244-63  I  http://dx.doi.org/10.20517/cdr.2020.89

               23.  Croteau DL, Popuri V, Opresko PL, Bohr VA. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem
                   2014;83:519-52.
               24.  Casper AM, Durkin SG, Arlt MF, Glover TW. Chromosomal instability at common fragile sites in Seckel syndrome. Am J Hum Genet
                   2004;75:654-60.
               25.  Gavande NS, VanderVere-Carozza PS, Hinshaw HD, et al. DNA repair targeted therapy: The past or future of cancer treatment?
                   Pharmacol Ther 2016;160:65-83.
               26.  Pearl LH, Schierz AC, Ward SE, Al-Lazikani B, Pearl FM. Therapeutic opportunities within the DNA damage response. Nat Rev Cancer
                   2015;15:166-80.
               27.  Nickoloff JA. Paths from DNA damage and signaling to genome rearrangements via homologous recombination. Mutat Res
                   2017;806:64-74.
               28.  Nickoloff JA, Boss MK, Allen CP, LaRue SM. Translational research in radiation-induced DNA damage signaling and repair. Transl
                   Cancer Res 2017;6:S875-S91.
               29.  Desai A, Yan Y, Gerson SL. Advances in therapeutic targeting of the DNA damage response in cancer. DNA Repair 2018;66-67:24-9.
               30.  Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 2017;66:801-17.
               31.  Hengel SR, Spies MA, Spies M. Small-molecule inhibitors targeting DNA repair and DNA repair deficiency in research and cancer
                   therapy. Cell Chem Biol 2017;24:1101-19.
               32.  Killock D. Targeted therapies: DNA polymerase theta-a new target for synthetic lethality? Nat Rev Clin Oncol 2015;12:125.
               33.  Pilie PG, Tang C, Mills GB, Yap TA. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol
                   2019;16:81-104.
               34.  Carrassa L, Damia G. DNA damage response inhibitors: Mechanisms and potential applications in cancer therapy. Cancer Treat Rev
                   2017;60:139-51.
               35.  Nickoloff JA, Jones D, Lee S-H, Williamson EA, Hromas R. Drugging the cancers addicted to DNA repair. J Natl Cancer Inst
                   2017;109:djx059.
               36.  Yazinski SA, Zou L. Functions, regulation, and therapeutic implications of the ATR checkpoint pathway. Annu Rev Genet 2016;50:155-73.
               37.  Serrano MA, Li Z, Dangeti M, et al. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous
                   recombination DNA repair. Oncogene 2013;32:2452-62.
               38.  Awasthi P, Foiani M, Kumar A. ATM and ATR signaling at a glance. J Cell Sci 2015;128:4255-62.
               39.  Weber AM, Ryan AJ. ATM and ATR as therapeutic targets in cancer. Pharmacol Ther 2015;149:124-38.
               40.  Williams RM, Yates LA, Zhang X. Structures and regulations of ATM and ATR, master kinases in genome integrity. Curr Opin Struct
                   Biol 2020;61:98-105.
               41.  Mordes DA, Cortez D. Activation of ATR and related PIKKs. Cell Cycle 2008;7:2809-12.
               42.  Matsuoka S, Ballif BA, Smogorzewska A, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA
                   damage. Science 2007;316:1160-6.
               43.  Tapia-Alveal C, Calonge TM, O’Connell MJ. Regulation of Chk1. Cell Div 2009;4:8.
               44.  Merry C, Fu K, Wang J, Yeh IJ, Zhang Y. Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle 2010;9:279-83.
               45.  Smith J, Tho LM, Xu N, Gillespie DA. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res
                   2010;108:73-112.
               46.  Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and
                   cancer: Cell cycle and proliferation-dependent regulation. Semin Cancer Biol 2016;37-38:51-64.
               47.  Berti M, Vindigni A. Replication stress: getting back on track. Nat Struct Mol Biol 2016;23:103-9.
               48.  Branzei D, Foiani M. The checkpoint response to replication stress. DNA Repair 2009;8:1038-46.
               49.  Mazouzi A, Velimezi G, Loizou JI. DNA replication stress: causes, resolution and disease. Exp Cell Res 2014;329:85-93.
               50.  Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol 2014;16:2-9.
               51.  Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break
                   repair. Nat Rev Mol Cell Biol 2017;18:495-506.
               52.  Wright WD, Shah SS, Heyer WD. Homologous recombination and the repair of DNA double-strand breaks.  J Biol Chem
                   2018;293:10524-35.
               53.  de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome.
                   PLoS Genet 2011;7:e1002384.
               54.  Piazza A, Heyer WD. Homologous recombination and the formation of complex genomic rearrangements. Trends Cell Biol
                   2019;29:135-49.
               55.  Guirouilh-Barbat J, Lambert S, Bertrand P, Lopez BS. Is homologous recombination really an error-free process? Front Genet
                   2014;5:175.
               56.  Sfeir A, Symington LS. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem Sci
                   2015;40:701-14.
               57.  Costantino L, Sotiriou SK, Rantala JK, et al. Break-induced replication repair of damaged forks induces genomic duplications in human
                   cells. Science 2014;343:88-91.
               58.  Iliakis G, Murmann T, Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous
                   end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. Mutat Res Genet
                   Toxicol Environ Mutagen 2015;793:166-75.
   76   77   78   79   80   81   82   83   84   85   86