Page 58 - Read Online
P. 58
Biersack. Cancer Drug Resist 2019;2:1-17 I http://dx.doi.org/10.20517/cdr.2019.09 Page 17
Pharmacol Sci 2017;21:5065-71.
112. Sippl C, Ketter R, Bohr L, Kim YJ, List M, et al. MiRNA-181d expression significantly affects treatment responses to carmustine wafer
implantation. Neurosurgery 2018; doi:10.1093/neuros/nyy214.
113. Xie Q, Yan Y, Huang Z, Zhong X, Huang L. MicroRNA-221 targeting PI3-K/Akt signaling axis indces cell proliferation and BCNU
resistance in human glioblastoma. Neuropathol 2014;34:455-64.
114. Anchel M, Hervey A, Robbins WJ. Antibiotic substances from Basidiomycetes. VII. Clitocybe illudens. Proc Natl Acad Sci 1950;6:30-6.
115. Crooke ST, Bradner WT. Mitomycin C: a review. Cancer Treat Rev 1976;3:121-39.
116. Hata T, Sugawara R. Mitomycin, a new antibiotic from Streptomyces. II. Description of the strain. J Antibiot 1956;9:147-51.
117. Wakaki S, Marumo H, Tomioka K, Shimizu G, Kato E, et al. Isolation of new fractions of antitumor mitomycins. Antibiotics Chemother
1958;8:228-40.
118. Frank W, Osterberg AE. Mitomycin C: a evaluation of the Japanese reports. Cancer Chemother Rep 1960;9:114-9.
119. Bradner WT. Mitomycin C: a clinical update. Cancer Treat Rev 2001;27:35-50.
120. Tomasz M. Mitomycin C: small, fast and deadly (but very selective). Chem Biol 1995;2:575-9.
121. Feist M, Huang X, Müller JM, Rau B, Dubiel W. Can hyperthermic intraperitoneal chemotherapy efficiency be improved by blocking
the DNA repair factor COP9 signalosome? Int J Colorectal Dis 2014;29:673-80.
122. Xu T, Qin L, Zhu Z, Wang X, Liu Y, et al. MicroRNA-31 functions as a tumor suppressor and increases sensitivity to mitomycin-C in
urothelial bladder cancer by targeting integrin α5. Oncotarget 2016;7:27445-57.
123. Weeraratne SD, Amani V, Neiss A, Teider N, Scott DK, et al. MiR-34a confers chemosensitivity through modulation of MAGE-A and
p53 in medulloblastoma. Neuro Oncol 2011;13:165-75.
124. Sharma S, Nagpal N, Ghosh PC, Kulshreshtha R. p53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA
2017;23:1237-46.
125. Mezencev R, Matyunina LV, Jabbari N, McDonald JF. Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast cancer cells:
systems analysis of molecular changes and their effect on radiation and drug sensitivity. BMC Cancer 2016;16:236.
126. Lee S, Yu KR, Ryu YS, Oh YS, Hong IS, et al. MiR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct
targeting of AIMP3/p18. AGE 2014;36:9724
127. Xu K, Liang X, Cui D, Wu Y, Shi W, et al. MiR-1915 inhibits Bcl-2 to modulate multidrug resistance by increasing drug-sensitivity in
human colorectal carcinoma cells. Mol Carcinogen 2013;52:70-8.
128. Tarasov VA, Matishov DG, Shin EF, Boyko NV, Timoshkina NN, et al. Inheritable changes in miRNAs expression in HeLa cells after
X-ray and mitomycin C treatment. Russ J Gen 2014;50:798-806.
129. Le VH, Inai M, Williams RM, Kan T. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent
tetrahydroisoquinoline antitumor antibiotics. Nat Prod Rep 2015;32:328-47.
130. Jaspers NG, Raams A, Kelner MJ, Ng JM, Yamashita YM, et al. Anti-tumour compounds illudin S and irofulven induce DNA lesions
ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair 2002;1:1027-38.
131. Forni C, Minuzzo M, Virdis E, Tamborini E, Simone M, et al. Trabectedin (ET-743) promotes differentiation in myxoid liposarcoma
tumors. Mol Cancer Ther 2009;8:449-57.
132. Uboldi S, Calura E, Beltrame L, Nerini IF, Marchini S, et al. A systems biology approach to characterize the regulatory networks leading
to trabectedin resistance in an in vitro model of myxoid liposarcoma. PLoS One 2012;7:e35423.
133. Neia CP, Cavalloni G, Chiorino G, Ostano P, Aglietta M, et al. Gene and microRNA modulation upon trabectedin treatment in a human
intrahepatic cholangiocarcinoma paired patient derived xenograft and cell line. Oncotarget 2016;7:86766-80.